1
|
Zarza X, Van Wijk R, Shabala L, Hunkeler A, Lefebvre M, Rodriguez‐Villalón A, Shabala S, Tiburcio AF, Heilmann I, Munnik T. Lipid kinases PIP5K7 and PIP5K9 are required for polyamine-triggered K + efflux in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:416-432. [PMID: 32666545 PMCID: PMC7693229 DOI: 10.1111/tpj.14932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Polyamines, such as putrescine, spermidine and spermine (Spm), are low-molecular-weight polycationic molecules present in all living organisms. Despite their implication in plant cellular processes, little is known about their molecular mode of action. Here, we demonstrate that polyamines trigger a rapid increase in the regulatory membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2 ), and that this increase is required for polyamine effects on K+ efflux in Arabidopsis roots. Using in vivo 32 Pi -labelling of Arabidopsis seedlings, low physiological (μm) concentrations of Spm were found to promote a rapid PIP2 increase in roots that was time- and dose-dependent. Confocal imaging of a genetically encoded PIP2 biosensor revealed that this increase was triggered at the plasma membrane. Differential 32 Pi -labelling suggested that the increase in PIP2 was generated through activation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity rather than inhibition of a phospholipase C or PIP2 5-phosphatase activity. Systematic analysis of transfer DNA insertion mutants identified PIP5K7 and PIP5K9 as the main candidates involved in the Spm-induced PIP2 response. Using non-invasive microelectrode ion flux estimation, we discovered that the Spm-triggered K+ efflux response was strongly reduced in pip5k7 pip5k9 seedlings. Together, our results provide biochemical and genetic evidence for a physiological role of PIP2 in polyamine-mediated signalling controlling K+ flux in plants.
Collapse
Affiliation(s)
- Xavier Zarza
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Ringo Van Wijk
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Lana Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
| | - Anna Hunkeler
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Matthew Lefebvre
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| | - Antia Rodriguez‐Villalón
- Department of BiologyInstitute of Agricultural ScienceSwiss Federal Institute of Technology in ZurichZurichSwitzerland
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartAustralia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshanChina
| | - Antonio F. Tiburcio
- Dept. of Natural Products, Plant Biology and Soil ScienceUniversity of BarcelonaBarcelonaSpain
| | - Ingo Heilmann
- Dept of Cellular BiochemistryInstitute of Biochemistry and BiotechnologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Teun Munnik
- Research Cluster Green Life SciencesSection Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 94215Amsterdam1090 GEThe Netherlands
| |
Collapse
|
2
|
Strobl SM, Kischka D, Heilmann I, Mouille G, Schneider S. The Tonoplastic Inositol Transporter INT1 From Arabidopsis thaliana Impacts Cell Elongation in a Sucrose-Dependent Way. FRONTIERS IN PLANT SCIENCE 2018; 9:1657. [PMID: 30505313 PMCID: PMC6250803 DOI: 10.3389/fpls.2018.01657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/25/2018] [Indexed: 05/29/2023]
Abstract
The tonoplastic inositol transporter INT1 is the only known transport protein in Arabidopsis that facilitates myo-inositol import from the vacuole into the cytoplasm. Impairment of the release of vacuolar inositol by knockout of INT1 results in a severe inhibition of cell elongation in roots as well as in etiolated hypocotyls. Importantly, a more strongly reduced cell elongation was observed when sucrose was supplied in the growth medium, and this sucrose-dependent effect can be complemented by the addition of exogenous myo-inositol. Comparing int1 mutants (defective in transport) with mutants defective in myo-inositol biosynthesis (mips1 mutants) revealed that the sucrose-induced inhibition in cell elongation does not just depend on inositol depletion. Secondary effects as observed for altered availability of inositol in biosynthesis mutants, as disturbed membrane turnover, alterations in PIN protein localization or alterations in inositol-derived signaling molecules could be ruled out to be responsible for impairing the cell elongation in int1 mutants. Although the molecular mechanism remains to be elucidated, our data implicate a crucial role of INT1-transported myo-inositol in regulating cell elongation in a sucrose-dependent manner and underline recent reports of regulatory roles for sucrose and other carbohydrate intermediates as metabolic semaphores.
Collapse
Affiliation(s)
- Sabrina Maria Strobl
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dominik Kischka
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris Saclay, Versailles, France
| | - Sabine Schneider
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
3
|
Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A. Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 2017; 144:3578-3589. [PMID: 28851711 PMCID: PMC5665488 DOI: 10.1242/dev.155788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.
Collapse
Affiliation(s)
- Bojan Gujas
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Tiago M D Cruz
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Elizabeth Kastanaki
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, CH-8008, Zurich, Switzerland
| | - Teun Munnik
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Antia Rodriguez-Villalon
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
4
|
O'Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, Lamb JFS, Monteros MJ, Graham MA, Gronwald JW, Krom N, Li J, Dai X, Zhao PX, Vance CP. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics 2015; 16:502. [PMID: 26149169 PMCID: PMC4492073 DOI: 10.1186/s12864-015-1718-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. Results A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. Conclusions The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/, a publicly available genomic resource for alfalfa improvement and legume research. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1718-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | - Fengli Fu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | | | - S Sam Yang
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA. .,Present Address: Monsanto Company, Molecular Breeding Technology, Chesterfield, MO, 63167, USA.
| | - Deborah A Samac
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | - JoAnn F S Lamb
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | | | - Michelle A Graham
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | - John W Gronwald
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | - Nick Krom
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Jun Li
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Xinbin Dai
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Patrick X Zhao
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA. .,USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| |
Collapse
|