1
|
Xing J, Wang J, Cao J, Li K, Meng X, Wen J, Mysore KS, Wang G, Zhou C, Yin P. Identification of a Novel Gene MtbZIP60 as a Negative Regulator of Leaf Senescence through Transcriptome Analysis in Medicago truncatula. Int J Mol Sci 2024; 25:10410. [PMID: 39408738 PMCID: PMC11477300 DOI: 10.3390/ijms251910410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Leaves are the primary harvest portion in forage crops such as alfalfa (Medicago sativa). Delaying leaf senescence is an effective strategy to improve forage biomass production and quality. In this study, we employed transcriptome sequencing to analyze the transcriptional changes and identify key senescence-associated genes under age-dependent leaf senescence in Medicago truncatula, a legume forage model plant. Through comparing the obtained expression data at different time points, we obtained 1057 differentially expressed genes, with 108 consistently up-regulated genes across leaf growth and senescence. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the 108 SAGs mainly related to protein processing, nitrogen metabolism, amino acid metabolism, RNA degradation and plant hormone signal transduction. Among the 108 SAGs, seven transcription factors were identified in which a novel bZIP transcription factor MtbZIP60 was proved to inhibit leaf senescence. MtbZIP60 encodes a nuclear-localized protein and possesses transactivation activity. Further study demonstrated MtbZIP60 could associate with MtWRKY40, both of which exhibited an up-regulated expression pattern during leaf senescence, indicating their crucial roles in the regulation of leaf senescence. Our findings help elucidate the molecular mechanisms of leaf senescence in M. truncatula and provide candidates for the genetic improvement of forage crops, with a focus on regulating leaf senescence.
Collapse
Affiliation(s)
- Jiayu Xing
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jialan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jianuo Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Xiao Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jiangqi Wen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Kirankumar S. Mysore
- Department of Biochemistry and Molecular Biology, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| |
Collapse
|
2
|
Zhou W, Xiao RY, Yang YX, Wang X, Wang DH, Wang ZZ. Clock protein LHY targets SNAT1 and negatively regulates the biosynthesis of melatonin in Hypericum perforatum. SCIENCE ADVANCES 2024; 10:eadq6505. [PMID: 39292789 PMCID: PMC11409971 DOI: 10.1126/sciadv.adq6505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Ru-Yi Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Yi-Xiao Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Xue Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Dong-hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Zhe-zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| |
Collapse
|
3
|
Lindbäck LN, Ji Y, Cervela-Cardona L, Jin X, Pedmale UV, Strand Å. An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1082-1096. [PMID: 37602940 PMCID: PMC10592178 DOI: 10.1111/nph.19219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The development of a seedling into a photosynthetically active plant is a crucial process. Despite its importance, we do not fully understand the regulatory mechanisms behind the establishment of functional chloroplasts. We herein provide new insight into the early light response by identifying the function of three basic region/leucine zipper (bZIP) transcription factors: bZIP16, bZIP68, and GBF1. These proteins are involved in the regulation of key components required for the establishment of photosynthetically active chloroplasts. The activity of these bZIPs is dependent on the redox status of a conserved cysteine residue, which provides a mechanism to finetune light-responsive gene expression. The blue light cryptochrome (CRY) photoreceptors provide one of the major light-signaling pathways, and bZIP target genes overlap with one-third of CRY-regulated genes with an enrichment for photosynthesis/chloroplast-associated genes. bZIP16, bZIP68, and GBF1 were demonstrated as novel interaction partners of CRY1. The interaction between CRY1 and bZIP16 was stimulated by blue light. Furthermore, we demonstrate a genetic link between the bZIP proteins and cryptochromes as the cry1cry2 mutant is epistatic to the cry1cry2bzip16bzip68gbf1 mutant. bZIP16, bZIP68, and GBF1 regulate a subset of photosynthesis associated genes in response to blue light critical for a proper greening process in Arabidopsis.
Collapse
Affiliation(s)
- Louise Norén Lindbäck
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Yan Ji
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Luis Cervela-Cardona
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
4
|
Cao J, Liu H, Tan S, Li Z. Transcription Factors-Regulated Leaf Senescence: Current Knowledge, Challenges and Approaches. Int J Mol Sci 2023; 24:9245. [PMID: 37298196 PMCID: PMC10253112 DOI: 10.3390/ijms24119245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them.
Collapse
Affiliation(s)
| | | | | | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.C.); (H.L.); (S.T.)
| |
Collapse
|
5
|
Samtani H, Sharma A, Khurana P. Wheat ocs-Element Binding Factor 1 Enhances Thermotolerance by Modulating the Heat Stress Response Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:914363. [PMID: 35712575 PMCID: PMC9194769 DOI: 10.3389/fpls.2022.914363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 05/26/2023]
Abstract
The basic leucine zipper family (bZIP) represents one of the largest families of transcription factors that play an important role in plant responses to abiotic stresses. However, their role in contributing to thermotolerance in plants is not well explored. In this article, two homoeologs of wheat ocs-element binding factor 1 (TaOBF1-5B and TaOBF1-5D) were found to be heat-responsive TabZIP members. Their expression analysis in Indian wheat cultivars revealed their differential expression pattern and TaOBF1-5B was found to be more receptive to heat stress. Consistent with this, the heterologous overexpression of TaOBF1-5B in Arabidopsis thaliana and Oryza sativa promoted the expression of stress-responsive genes, which contributed to thermotolerance in transgenic plants. TaOBF1-5B was seen to interact with TaHSP90 in the nucleus and TaSTI in the nucleolus and the ER. Thus, the results suggest that TaOBF1-5B might play an important regulatory role in the heat stress response and is a major factor governing thermotolerance in plants.
Collapse
Affiliation(s)
| | | | - Paramjit Khurana
- *Correspondence: Paramjit Khurana ; orcid.org/0000-0002-8629-1245
| |
Collapse
|
6
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
7
|
CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes (Basel) 2022; 13:genes13020266. [PMID: 35205311 PMCID: PMC8871960 DOI: 10.3390/genes13020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin ligase CRL4Cdt2 plays a vital role in preserving genomic integrity by regulating essential proteins during S phase and after DNA damage. Deregulation of CRL4Cdt2 during the cell cycle can cause DNA re-replication, which correlates with malignant transformation and tumor growth. CRL4Cdt2 regulates a broad spectrum of cell cycle substrates for ubiquitination and proteolysis, including Cdc10-dependent transcript 1 or Chromatin licensing and DNA replication factor 1 (Cdt1), histone H4K20 mono-methyltransferase (Set8) and cyclin-dependent kinase inhibitor 1 (p21), which regulate DNA replication. However, the mechanism it operates via its substrate receptor, Cdc10-dependent transcript 2 (Cdt2), is not fully understood. This review describes the essential features of the N-terminal and C-terminal parts of Cdt2 that regulate CRL4 ubiquitination activity, including the substrate recognition domain, intrinsically disordered region (IDR), phosphorylation sites, the PCNA-interacting protein-box (PIP) box motif and the DNA binding domain. Drugs targeting these specific domains of Cdt2 could have potential for the treatment of cancer.
Collapse
|
8
|
Ding X, Zhang D, Gu D, Li Z, Liang H, Zhu H, Jiang Y, Duan X. Histone H3K27 demethylase SlJMJ4 promotes dark- and ABA- induced leaf senescence in tomato. HORTICULTURE RESEARCH 2022; 9:uhab077. [PMID: 35043207 PMCID: PMC8973004 DOI: 10.1093/hr/uhab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/12/2023]
Abstract
Leaf senescence is a highly-programmed developmental process during the plant life cycle. ABA plays an important role in leaf senescence. However, the mechanism underlying ABA-mediated leaf senescence, particularly the upstream epigenetic regulatory network, remains largely unclear. Here, we identified that SlJMJ4, a Jumonji C (jmjC) domain-containing protein in tomato, specifically demethylates di- and tri-methylations of lysine 27 of histone H3 (H3K27) in vitro and in vivo. Overexpression of SlJMJ4 results in premature senescence phenotype and promotes dark- and ABA-induced leaf senescence in tomato. Under dark condition, SlJMJ4-promoted leaf senescence is associated with upregulated expression of transcription factors (SlORE1 and SlNAP2) and senescence-associated genes (SlSAG113, SlSAG12) via removal of H3K27me3. In responses to ABA, overexpression of SlJMJ4 increases its binding at the loci of SlORE1, SlNAP2, SlSAG113, SlSAG12, SlABI5 and SlNCED3 and decreases their H3K27me3 levels, and therefore activates their expression and mediates ABA-induced leaf senescence in tomato. Taken together, these results demonstrate that SlJMJ4 plays a positive role in leaf senescence in tomato and is implicated in ABA-induced leaf senescence by binding to many key genes related to ABA synthesis and signaling, transcription regulation and senescence and hence promoting their H3K27me3 demethylation.
Collapse
Affiliation(s)
- Xiaochun Ding
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanzhi Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Wang H, Zhang Y, Norris A, Jiang CZ. S1-bZIP Transcription Factors Play Important Roles in the Regulation of Fruit Quality and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 12:802802. [PMID: 35095974 PMCID: PMC8795868 DOI: 10.3389/fpls.2021.802802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sugar metabolism not only determines fruit sweetness and quality but also acts as signaling molecules to substantially connect with other primary metabolic processes and, therefore, modulates plant growth and development, fruit ripening, and stress response. The basic region/leucine zipper motif (bZIP) transcription factor family is ubiquitous in eukaryotes and plays a diverse array of biological functions in plants. Among the bZIP family members, the smallest bZIP subgroup, S1-bZIP, is a unique one, due to the conserved upstream open reading frames (uORFs) in the 5' leader region of their mRNA. The translated small peptides from these uORFs are suggested to mediate Sucrose-Induced Repression of Translation (SIRT), an important mechanism to maintain sucrose homeostasis in plants. Here, we review recent research on the evolution, sequence features, and biological functions of this bZIP subgroup. S1-bZIPs play important roles in fruit quality, abiotic and biotic stress responses, plant growth and development, and other metabolite biosynthesis by acting as signaling hubs through dimerization with the subgroup C-bZIPs and other cofactors like SnRK1 to coordinate the expression of downstream genes. Direction for further research and genetic engineering of S1-bZIPs in plants is suggested for the improvement of quality and safety traits of fruit.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
| | - Yunting Zhang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ayla Norris
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
10
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
12
|
Garg A, Kirchler T, Fillinger S, Wanke F, Stadelhofer B, Stahl M, Chaban C. Targeted manipulation of bZIP53 DNA-binding properties influences Arabidopsis metabolism and growth. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5659-5671. [PMID: 31257431 PMCID: PMC6812703 DOI: 10.1093/jxb/erz309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
bZIP transcription factors regulate diverse processes in eukaryotic cells. Arabidopsis bZIP members of the C and S1 groups form heterodimers and synergistically control metabolic reprogramming during stress responses. However, their functional characterization is complicated due to an overlapping heterodimerization network and high redundancy. In this study, we develop a simple but powerful approach for generating dominant negative mutants of bZIP factors with high specificity. By applying in vitro DNA-binding, reporter gene and protoplast two-hybrid assays, and plant mutant analysis, we show that phosphorylation-mimicking substitution of conserved serines in the DNA-binding domain of bZIP monomeric subunits suffices for the disruption of the interaction of both bZIP homo- and heterodimers with cognate DNA. This results in the transcriptional inactivation of target genes. The dominant-negative effect is achieved by the unaltered function of the intrinsic nuclear localization signal and dimerization properties of the mutated bZIP protein. Our findings not only reveal an additional regulatory mechanism of bZIP10 intracellular localization, but also provide evidence of the involvement of bZIP53 in the diurnal adjustments of amino acid metabolism. Our data demonstrate the advantages and the suitability of this new approach for the artificial inactivation of bZIP transcription factors in plants, and it may also be of use for other organisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Stahl
- ZMBP, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
13
|
Yang Z, Sun J, Chen Y, Zhu P, Zhang L, Wu S, Ma D, Cao Q, Li Z, Xu T. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genet 2019; 20:41. [PMID: 31023242 PMCID: PMC6482516 DOI: 10.1186/s12863-019-0743-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
Background The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved transcription factor families. In addition to being involved in growth and development, bZIP transcription factors also play an important role in plant adaption to abiotic stresses. Results A total of 41 bZIP genes that encode 66 proteins were identified in Ipomoea trifida. They were distributed on 14 chromosomes of Ipomoea trifida. Segmental and tandem duplication analysis showed that segmental duplication played an important role in the ItfbZIP gene amplification. ItfbZIPs were divided into ten groups (A, B, C, D, E, F, G, H, I and S groups) according to their phylogenetic relationships with Solanum lycopersicum and Arabidopsis thaliana. The regularity of the exon/intron numbers and distributions is consistent with the group classification in evolutionary tree. Prediction of the cis-acting elements found that promoter regions of ItfbZIPs harbored several stress responsive cis-acting elements. Protein three-dimensional structural analysis indicated that ItfbZIP proteins mainly consisted of α-helices and random coils. The gene expression pattern from transcriptome data and qRT-PCR analysis showed that ItfbZIP genes expressed with a tissue-specific manner and differently expressed under various abiotic stresses, suggesting that the ItfbZIPs were involved in stress response and adaption in Ipomoea trifida. Conclusions Genome-wide identification, gene structure, phylogeny and expression analysis of bZIP gene in Ipomoea trifida supplied a solid theoretical foundation for the functional study of bZIP gene family and further facilitated the molecular breeding of sweet potato. Electronic supplementary material The online version of this article (10.1186/s12863-019-0743-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengmei Yang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Yao Chen
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Panpan Zhu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | - Lei Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Shaoyuan Wu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Daifu Ma
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, 221121, Jiangsu, China
| | - Qinghe Cao
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, 221121, Jiangsu, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China. .,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Tao Xu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China. .,Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
14
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
15
|
Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H. A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. THE PLANT CELL 2017; 29:2854-2870. [PMID: 29061866 PMCID: PMC5728132 DOI: 10.1105/tpc.17.00438] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a highly coordinated, complicated process involving the integration of numerous internal and environmental signals. Salicylic acid (SA) and reactive oxygen species (ROS) are two well-defined inducers of leaf senescence whose contents progressively and interdependently increase during leaf senescence via an unknown mechanism. Here, we characterized the transcription factor WRKY75 as a positive regulator of leaf senescence in Arabidopsis thaliana. Knockdown or knockout of WRKY75 delayed age-dependent leaf senescence, while overexpression of WRKY75 accelerated this process. WRKY75 transcription is induced by age, SA, H2O2, and multiple plant hormones. Meanwhile, WRKY75 promotes SA production by inducing the transcription of SA INDUCTION-DEFICIENT2 (SID2) and suppresses H2O2 scavenging, partly by repressing the transcription of CATALASE2 (CAT2). Genetic analysis revealed that the mutation of SID2 or an increase in catalase activity rescued the precocious leaf senescence phenotype evoked by WRKY75 overexpression. Based on these results, we propose a tripartite amplification loop model in which WRKY75, SA, and ROS undergo a gradual but self-sustained rise driven by three interlinking positive feedback loops. This tripartite amplification loop provides a molecular framework connecting upstream signals, such as age and plant hormones, to the downstream regulatory network executed by SA- and H2O2-responsive transcription factors during leaf senescence.
Collapse
Affiliation(s)
- Pengru Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhonghai Li
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixin Huang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuang Fang
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Chang E, Zhang J, Deng N, Yao X, Liu J, Zhao X, Jiang Z, Shi S. Transcriptome differences between 20- and 3,000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Correction: Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. Plants 2015, 4, 691–709. PLANTS 2016; 5:plants5030035. [PMID: 27598219 PMCID: PMC5039743 DOI: 10.3390/plants5030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/21/2022]
|