1
|
Paradiso A, Durante M, Caretto S, De Paolis A. Establishment of Dittrichia viscosa L. Hairy Roots and Improvement of Bioactive Compound Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:3236. [PMID: 39599445 PMCID: PMC11598370 DOI: 10.3390/plants13223236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Dittrichia viscosa is a ruderal plant species growing along roadsides and well adapting to extreme environmental conditions. D. viscosa plant tissues, especially leaves, are known to be a rich source of bioactive metabolites which have antioxidant, cytotoxic, antiproliferative and anticancer properties. Hairy root cultures are a suitable biotechnological system for investigating plant metabolic pathways and producing specialized metabolites in in vitro conditions. In this study, D. viscosa hairy root transformed lines induced by Agrobacterium rhizogenes ATCC15834 were obtained using leaf explants, and the integration of rolB and rolC genes in the genomes of transformed hairy roots were confirmed by PCR analysis. Three hairy root D. viscosa lines (DvHrT1, DvHrT4 and DvHrT5) having different phenotypic features were characterized in terms of total phenolics, flavonoids and antioxidant activity. Correlated with antioxidant activity, phenolic and flavonoid content of DvHrT1 was significantly higher than control roots and the other DvHrT lines. Our results suggest that D. viscosa hairy roots can be a valuable tool for producing various bioactive compounds having antioxidant activity and are to be further investigated to produce other specific molecules that could find application in agricultural or pharmaceutical fields.
Collapse
Affiliation(s)
| | | | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.D.)
| | - Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.D.)
| |
Collapse
|
2
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
3
|
Iannelli MA, Nicolodi C, Coraggio I, Fabriani M, Baldoni E, Frugis G. A Novel Role of Medicago truncatula KNAT3/4/5-like Class 2 KNOX Transcription Factors in Drought Stress Tolerance. Int J Mol Sci 2023; 24:12668. [PMID: 37628847 PMCID: PMC10454132 DOI: 10.3390/ijms241612668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Class 2 KNOX homeobox transcription factors (KNOX2) play a role in promoting cell differentiation in several plant developmental processes. In Arabidopsis, they antagonize the meristematic KNOX1 function during leaf development through the modulation of phytohormones. In Medicago truncatula, three KNOX2 genes belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like or MtKNOX3-like) redundantly works upstream of a cytokinin-signaling module to control the symbiotic root nodule formation. Their possible role in the response to abiotic stress is as-of-yet unknown. We produced transgenic M. truncatula lines, in which the expression of four MtKNOX3-like genes was knocked down by RNA interference. When tested for response to water withdrawal in the soil, RNAi lines displayed a lower tolerance to drought conditions compared to the control lines, measured as increased leaf water loss, accelerated leaf wilting time, and faster chlorophyll loss. Reanalysis of a transcriptomic M. truncatula drought stress experiment via cluster analysis and gene co-expression networks pointed to a possible role of MtKNOX3-like transcription factors in repressing a proline dehydrogenase gene (MtPDH), specifically at 4 days after water withdrawal. Proline measurement and gene expression analysis of transgenic RNAi plants compared to the controls confirmed the role of KNOX3-like genes in inhibiting proline degradation through the regulation of the MtPDH gene.
Collapse
Affiliation(s)
- Maria Adelaide Iannelli
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Chiara Nicolodi
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Immacolata Coraggio
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Marco Fabriani
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy;
| | - Giovanna Frugis
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; (M.A.I.); (C.N.); (I.C.); (M.F.)
| |
Collapse
|
4
|
Niazian M, Belzile F, Torkamaneh D. CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1044. [PMID: 35448772 PMCID: PMC9027312 DOI: 10.3390/plants11081044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene's function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through Agrobacterium rhizogenes-mediated hairy root transformation. The combination of A. rhizogenes hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective "in root" functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of Agrobacterium infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj 6616936311, Iran
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Losa A, Vorster J, Cominelli E, Sparvoli F, Paolo D, Sala T, Ferrari M, Carbonaro M, Marconi S, Camilli E, Reboul E, Waswa B, Ekesa B, Aragão F, Kunert K. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food Energy Secur 2021. [DOI: 10.1002/fes3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alessia Losa
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Juan Vorster
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Eleonora Cominelli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Francesca Sparvoli
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Dario Paolo
- National Research Council Institute of Agricultural Biology and Biotechnology (CNR‐IBBA) Milan Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics Research Centre for Genomics and Bioinformatics (CREA‐GB) Montanaso Italy
| | - Marika Ferrari
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Marina Carbonaro
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics Research Centre for Food and Nutrition (CREA‐AN) Rome Italy
| | | | - Boaz Waswa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | - Beatrice Ekesa
- International Center for Tropical Agriculture (CIAT) CIAT Regional Office for Africa Nairobi Kenya
| | | | - Karl Kunert
- Department Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
6
|
Kong W, Zhang C, Zhang S, Qiang Y, Zhang Y, Zhong H, Li Y. Uncovering the Novel QTLs and Candidate Genes of Salt Tolerance in Rice with Linkage Mapping, RTM-GWAS, and RNA-seq. RICE (NEW YORK, N.Y.) 2021; 14:93. [PMID: 34778931 PMCID: PMC8590990 DOI: 10.1186/s12284-021-00535-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/06/2021] [Indexed: 05/07/2023]
Abstract
Salinity is a major abiotic stress that limits plant growth and crop productivity. Indica rice and japonica rice show significant differences in tolerance to abiotic stress, and it is considered a feasible method to breed progeny with stronger tolerance to abiotic stress by crossing indica and japonica rice. We herein developed a high-generation recombinant inbred lines (RILs) from Luohui 9 (indica) X RPY geng (japonica). Based on the high-density bin map of this RILs population, salt tolerance QTLs controlling final survival rates were analyzed by linkage mapping and RTM-GWAS methods. A total of seven QTLs were identified on chromosome 3, 4, 5, 6, and 8. qST-3.1, qST-5.1, qST-6.1, and qST-6.2 were novel salt tolerance QTLs in this study and their function were functionally verified by comparative analysis of parental genotype RILs. The gene aggregation result of these four new QTLs emphasized that the combination of the four QTL synergistic genotypes can significantly improve the salt stress tolerance of rice. By comparing the transcriptomes of the root tissues of the parents' seedlings, at 3 days and 7 days after salt treatment, we then achieved fine mapping of QTLs based on differentially expressed genes (DEGs) identification and DEGs annotations, namely, LOC_Os06g01250 in qST-6.1, LOC_Os06g37300 in qST-6.2, LOC_Os05g14880 in qST-5.1. The homologous genes of these candidate genes were involved in abiotic stress tolerance in different plants. These results indicated that LOC_Os05g14880, LOC_Os06g01250, and LOC_Os06g37300 were the candidate genes of qST-5.1, qST-6.1, and qST-6.2. Our finding provided novel salt tolerance-related QTLs, candidate genes, and several RILs with better tolerance, which will facilitate breeding for improved salt tolerance of rice varieties and promote the exploration tolerance mechanisms of rice salt stress.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yalin Qiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yue Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
7
|
Mauro ML, Bettini PP. Agrobacterium rhizogenes rolB oncogene: An intriguing player for many roles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:10-18. [PMID: 34029941 DOI: 10.1016/j.plaphy.2021.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The rolB oncogene is one of the so-called rol genes found in the T-DNA region of the Agrobacterium rhizogenes Ri plasmid and involved in the hairy root syndrome, a tumour characterized by adventitious root overgrowth on plant stem. rolB produces in plants a peculiar phenotype that, together with its root-inducing capacity, has been connected to auxin sensitivity. The gene is able to modify the plant genetic programme to induce meristem cells and direct them to differentiate not only roots, but also other cells, tissues or organs. Besides its essential function in hairy root pathogenesis, the rolB role has been progressively extended to cover several physiological aspects in the transgenic plants: from secondary metabolites production and ROS inhibition, to abiotic and biotic stress tolerance and photosynthesis improvement. Some of the observed effects could be determined, at least in part, through microRNAs molecules, suggesting an epigenetic control rolB-mediated. These multifaceted capacities could allow plants to withstand adverse environmental conditions, enhancing fitness. In spite of this expanding knowledge, functional analyses did not detect yet any definitive rolB-derived biochemical product, even if more than one enzymatic activity has been ascribed to it. Moreover, phylogenetic and evolutionary studies evidenced no homology with any plant sequences but, otherwise, it belongs to the Plast family, a group of rolB-homologous bacterial genes. Finally, the finding of sequences similar to rolB in plants not infected by A. rhizogenes suggests a hypothetical plant origin for this gene, implying different possibilities about its evolution.
Collapse
Affiliation(s)
- Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Priscilla P Bettini
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto f.no, FI, Italy.
| |
Collapse
|
8
|
Favero BT, Tan Y, Lin Y, Hansen HB, Shadmani N, Xu J, He J, Müller R, Almeida A, Lütken H. Transgenic Kalanchoë blossfeldiana, Containing Individual rol Genes and Open Reading Frames Under 35S Promoter, Exhibit Compact Habit, Reduced Plant Growth, and Altered Ethylene Tolerance in Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:672023. [PMID: 34025708 PMCID: PMC8138453 DOI: 10.3389/fpls.2021.672023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Reduced growth habit is a desirable trait for ornamental potted plants and can successfully be obtained through Rhizobium rhizogenes transformation in a stable and heritable manner. Additionally, it can also be obtained by transformation with Agrobacterium tumefaciens harboring specific genes from R. rhizogenes. The bacterial T-DNA harbors four root oncogenic loci (rol) genes and 14 less known open reading frames (ORFs). The four rol genes, i.e., rolA, rolB, rolC, and rolD, are conceived as the common denominator for the compact phenotype and the other less characterized ORFs seem auxiliary but present a potential breeding target for less aberrant and/or more tailored phenotypes. In this study, Kalanchoë blossfeldiana 'Molly' was transformed with individual rol genes and selected ORFs in 35S overexpressing cassettes to comprehensively characterize growth traits, gene copy and expression, and ethylene tolerance of the flowers. An association of reduced growth habit, e.g. height and diameter, was observed for rolB2 and ORF14-2 when a transgene single copy and high gene expression were detected. Chlorophyll content was reduced in overexpressing lines compared to wild type (WT), except for one ΔORF13a (a truncated ORF13a, where SPXX DNA-binding motif is absent). The flower number severely decreased in the overexpressing lines compared to WT. The anthesis timing showed that WT opened the first flower at 68.9 ± 0.9 days and the overexpressing lines showed similar or up to 24 days delay in flowering. In general, a single or low relative gene copy insertion was correlated to higher gene expression, ca. 3 to 5-fold, in rolB and ΔORF13a lines, while in ORF14 such relation was not directly linked. The increased gene expression observed in rolB2 and ΔORF13a-2 contributed to reducing plant growth and a more compact habit. Tolerance of detached flowers to 0.5 μl L-1 ethylene was markedly higher for ORF14 with 66% less flower closure at day 3 compared to WT. The subcellular localization of rolC and ΔORF13a was investigated by transient expression in Nicotiana benthamiana and confocal images showed that rolC and ΔORF13a are soluble and localize in the cytoplasm being able to enter the nucleus.
Collapse
Affiliation(s)
- Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yi Tan
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yan Lin
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Hanne Bøge Hansen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Nasim Shadmani
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Jiaming Xu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Junou He
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Renate Müller
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Aldo Almeida
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
9
|
De Paolis A, Caretto S, Quarta A, Di Sansebastiano GP, Sbrocca I, Mita G, Frugis G. Genome-Wide Identification of WRKY Genes in Artemisia annua: Characterization of a Putative Ortholog of AtWRKY40. PLANTS 2020; 9:plants9121669. [PMID: 33260767 PMCID: PMC7761028 DOI: 10.3390/plants9121669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
Artemisia annua L. is well-known as the plant source of artemisinin, a sesquiterpene lactone with effective antimalarial activity. Here, a putative ortholog of the Arabidopsis thaliana WRKY40 transcription factor (TF) was isolated via reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends in A. annua and named AaWRKY40. A putative nuclear localization domain was identified in silico and experimentally confirmed by using protoplasts of A. annua transiently transformed with AaWRKY40-GFP. A genome-wide analysis identified 122 WRKY genes in A. annua, and a manually curated database was obtained. The deduced proteins were categorized into the major WRKY groups, with group IIa containing eight WRKY members including AaWRKY40. Protein motifs, gene structure, and promoter regions of group IIa WRKY TFs of A. annua were characterized. The promoter region of AaWRKY group IIa genes contained several abiotic stress cis-acting regulatory elements, among which a highly conserved W-box motif was identified. Expression analysis of AaWRKY40 compared to AaWRKY1 in A. annua cell cultures treated with methyl jasmonate known to enhance artemisinin production, suggested a possible involvement of AaWRKY40 in terpenoid metabolism. Further investigation is necessary to study the role of AaWRKY40 and possible interactions with other TFs in A. annua.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.Q.); (G.M.)
- Correspondence: (A.D.P.); (S.C.)
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.Q.); (G.M.)
- Correspondence: (A.D.P.); (S.C.)
| | - Angela Quarta
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.Q.); (G.M.)
| | - Gian-Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, 73100 Lecce, Italy;
| | - Irene Sbrocca
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Salaria, Km 29.300, 00015 Rome, Italy; (I.S.); (G.F.)
| | - Giovanni Mita
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy; (A.Q.); (G.M.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Salaria, Km 29.300, 00015 Rome, Italy; (I.S.); (G.F.)
| |
Collapse
|
10
|
Jha P, Sen R, Jobby R, Sachar S, Bhatkalkar S, Desai N. Biotransformation of xenobiotics by hairy roots. PHYTOCHEMISTRY 2020; 176:112421. [PMID: 32505862 DOI: 10.1016/j.phytochem.2020.112421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The exponential industrial growth we see today rides on the back of large scale production of chemicals, explosives and pharmaceutical products. However, the effluents getting released from their manufacturing units are greatly compromising the sustainability of our environment. With greater awareness of the imperative for environmental clean-up, a promising approach that is attracting increasing research interests is biodegradation of xenobiotics. In this approach, biotransformation has proven to be one of the most effective tools. While many different model frameworks have been used to study different aspects of biotransformation, hairy roots (HRs) have been found to be exceptionally valuable. HR cultures are preferred over other in-vitro model systems due to their biochemical stability and hormone-autotrophy. In addition, the multi-enzyme biosynthetic potential of HRs which is similar to the parent plant and their relatively low-cost cultural requirements further characterize their suitability for biotransformation. The recent progress observed in scale-up of HR cultures and understanding of functional genomics has opened up new dimensions providing valuable insights for industrial application. This review article summarizes the potential of HR cultures in the biotransformation of xenobiotics, their limitations in the application on a large scale and current strategies to alleviate them. Advancement in bioreactors engineering enabling large scale cultivation and modern gene technologies improving biotransformation efficiency promises to extend laboratory results to industrial applications.
Collapse
Affiliation(s)
- Pamela Jha
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India.
| | - Rajdip Sen
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India
| | - Renitta Jobby
- Amity School of Biotechnology, Amity University Mumbai, Pune Expressway, Bhatan Post -Somathne, Panvel, Mumbai, Maharashtra, 410206, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, Maharashtra, 400098, India
| | - Shruti Bhatkalkar
- Department of Chemistry, University of Mumbai, Mumbai, Maharashtra, 400098, India
| | - Neetin Desai
- Sunandan Divatia School of Sciences, NMIMS, Mumbai, Maharashtra, 400056, India
| |
Collapse
|
11
|
Desmet S, Dhooghe E, De Keyser E, Quataert P, Eeckhaut T, Van Huylenbroeck J, Geelen D. Segregation of rol Genes in Two Generations of Sinningia speciosa Engineered Through Wild Type Rhizobium rhizogenes. FRONTIERS IN PLANT SCIENCE 2020; 11:859. [PMID: 32676085 PMCID: PMC7333734 DOI: 10.3389/fpls.2020.00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 05/26/2023]
Abstract
Rhizobium rhizogenes infects and transforms a wide range of plant species. It thereby introduces new genes located on transfer-DNA of the root inducing plasmid (pRi) into the plant genome and one of its abilities is to alter the host root system. Explants from pRi transformed roots from Sinningia speciosa were regenerated to create naturally transgenic Ri lines. The presence of rol and aux genes in the Ri lines was linked with altered growth characteristics: shorter peduncles, wrinkled leaves, delayed flowering and enhanced root growth. The potential of Ri lines for breeding was evaluated through consecutive backcrossing with the original host genotype. The progeny of reciprocal crosses showed non-Mendelian inheritance suggesting partial transmission of the of the aux and rol genes. The typical Ri phenotype observed in the primary Ri line was partially inherited. These results revealed that the Ri phenotype is a complex trait influenced by the genetic background of the Ri line.
Collapse
Affiliation(s)
- Siel Desmet
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmy Dhooghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
| | - Paul Quataert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
| | - Johan Van Huylenbroeck
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food Research, Melle, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Veremeichik GN, Bulgakov VP, Shkryl YN, Silantieva SA, Makhazen DS, Tchernoded GK, Mischenko NP, Fedoreyev SA, Vasileva EA. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene. J Biotechnol 2019; 306:38-46. [PMID: 31526834 DOI: 10.1016/j.jbiotec.2019.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023]
Abstract
The RolA protein belongs to the RolB class of plant T-DNA oncogenes, and shares structural similarity with the papilloma virus E2 DNA-binding domain. It has potentially as an inducer of plant secondary metabolism, although its role in biotechnology has yet to be realised. In this investigation, a Rubia cordifolia callus culture transformed with the rolA plant oncogene for more than 10 years was analysed. Expression of the rolA gene in the callus line was stable during long-term cultivation, and growth parameters were both elevated and stable, exceeding those of the non-transformed control culture. The rolA-transformed calli not only demonstrated remarkably stable growth, but also the ability to increase the yield of anthraquinones (AQs) in long-term cultivation. After ten years of cultivating rolA callus lines, we observed an activation of AQ biosynthesis from 200 mg/l to 874 mg/l. The increase was mainly due to activation of ruberitrinic acid biosynthesis. The expression of key AQ biosynthesis genes was strongly activated in rolA-transgenic calli. We compared the effects of the rolA gene with those of the rolB gene, which was previously considered the most potent inducer of secondary metabolism, and showed that rolA was more productive under conditions of long-term cultivation.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - V P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia; Far Eastern Federal University, Vladivostok, 690950, Russia
| | - Y N Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S A Silantieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - D S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - G K Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - N P Mischenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - E A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
13
|
Plant Development and Organogenesis: From Basic Principles to Applied Research. PLANTS 2019; 8:plants8090299. [PMID: 31450556 PMCID: PMC6783821 DOI: 10.3390/plants8090299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade, due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point is often the unreadiness of developmental biologists on one side, to foresee agricultural applications for their discoveries, and of the breeders on the other, to exploit gene function studies to apply candidate gene approaches when advantageous. In this Special Issue, developmental biologists and breeders make a special effort to reconcile research on basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions interwine and chase each other, giving the reader different but complementary perpectives from only apparently distant corners of the same world.
Collapse
|