1
|
Shi X, Zhang S, Yang Y, Jia L, Herrera-Balandrano DD, Wang S, Laborda P. Occurrence and Management of the Emerging Pathogen Epicoccum sorghinum. PLANT DISEASE 2025; 109:520-531. [PMID: 38956954 DOI: 10.1094/pdis-03-24-0711-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Epicoccum sorghinum is a notorious fungal pathogen that causes leaf spot symptoms on a wide range of plants, leading to devastating losses in crop production and quality. Here, to our knowledge, all reports regarding the occurrence and management of E. sorghinum are covered for the first time. E. sorghinum has been detected in tropical and subtropical climate areas during the rainy season, mainly from March to August, since 2016. Although E. sorghinum shows a broad host spectrum, the disease incidence is especially notorious in cereal crops and ornamental plants, suggesting that these plants are especially susceptible. Control methods based on synthetic fungicides, plant extracts, and microbial biocontrol agents have been reported. However, most agents were applied using only in vitro conditions, restricting the information about their actual applicability in field conditions. Additionally, E. sorghinum can colonize cereal grains and synthesize the carcinogenic mycotoxin tenuazonic acid, posing an enormous hazard for human health. Furthermore, although E. sorghinum is an emerging pathogen that is currently causing yield penalties in important crops, there is lack of information about its pathogenic mechanisms and virulence factors, and there is currently no commercial antifungal agent to manage E. sorghinum. Collectively, it is imperative to conduct in vivo studies to determine the efficacy of antifungal agents and the most effective methods of application to develop suitable management strategies against E. sorghinum.
Collapse
Affiliation(s)
- Xinchi Shi
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | - Shiling Zhang
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | - Yang Yang
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | - Leyao Jia
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | | | - Suyan Wang
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, P.R. China
| |
Collapse
|
2
|
GS A, Mayavathi NR NP, N.R. A, B.M. M, Sherpa DC, C A, Suresh A, Kammar S, M S, S S, B.N. G, Doss S G. Diversity of fungal pathogens in leaf spot disease of Indian mulberry and its management. Heliyon 2023; 9:e21750. [PMID: 38027777 PMCID: PMC10665727 DOI: 10.1016/j.heliyon.2023.e21750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Leaf spot disease in mulberry significantly affects silk production by reducing the nutritive quality of the leaves. This disease caused by various pathogens, regardless of the localities under the same climatic region. In the present investigation, an approximate incidence rate of 84 % was recorded in Karnataka based on surveys conducted in both farmer fields and germplasm locations. The causative agents have shown diversification, including new candidates such as Bipolaris sorokiniana, Curvularia lunata, Cladosporium sphaerospermum, and Epicoccum sorghinum. These findings mark the first report of these pathogens in Indian mulberry production. The investigation involved detailed pathogenicity assessments on the predominant mulberry silk production cultivar under controlled and field environments. Pathogens were identified using morpho-cultural, microscopic and phylogenetic analyses, including the internal transcribed spacer (ITS). Various concentrations of fungicides, both individually and in combinations, were evaluated to identify effective measures for mitigating yield losses. Among the fungicides tested against the new pathogens, Hexaconazole 5 % SC and Hexaconazole 5 % + Captan 70 % WP demonstrated high promise and cost-effectiveness. Consequently, these fungicides could serve as immediate solutions to prevent further yield reduction. However, it is essential to conduct comprehensive field investigations before recommending them as standard practices. Future research endeavors should focus on assessing the extent of crop loss caused by these newly identified pathogens in mulberry cultivation.
Collapse
Affiliation(s)
- Arunakumar GS
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Nisarga Pushpa Mayavathi NR
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Arya N.R.
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Monika B.M.
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Dolma Chhuden Sherpa
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Anupama C
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Akhil Suresh
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Supriya Kammar
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Supriya M
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Sruthi S
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| | - Gnanesh B.N.
- Sampoorna International Institute of Agri Science & Horticultural Technology, Maddur, 571 433, Karnataka, India
| | - Gandhi Doss S
- Mulberry Pathology and Molecular Biology Lab-I, Central Sericultural Research and Training Institute, Manandavadi Road, Srirampura, Mysuru, 570 008, Karnataka, India
| |
Collapse
|
3
|
Jia R, Chen J, Hu L, Liu X, Xiao K, Wang Y. Alcaligenes faecalis Juj3 alleviates Plasmodiophora brassicae stress to cabbage via promoting growth and inducing resistance. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.942409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clubroot is a devastating disease threatening global cruciferous vegetable production caused by Plasmodiophora brassicae (Pb). We have evaluated the positive effects of the Alcaligenes faecalis Juj3 on cabbage growth promotion and Pb stress alleviation through pot and field experiments. The Juj3 strain was isolated from a healthy cabbage rhizosphere with growth-promoting characteristics and was identified as A. faecalis based on morphological traits and phylogeny. Seed germination assays revealed that Juj3 inoculation enhances cabbage bud shoot and root growth. In pot experiments, inoculation with Juj3 fermentation powder at cabbage sowing dates significantly improved the seedling biomass. Combining seed treatments with root irrigation after transplanting considerably reduced the clubroot disease index and resulted in appreciable biocontrol efficacy (83.7%). Gene expression analyses of cabbage after Juj3 inoculation showed that PR2 and EIN3 expression were significantly up-regulated. Physiologically, Juj3 inoculation enhanced cabbage chlorophyll content and root activity in a normal environment. Irrespective of whether plants were under normal environment or Pb stresses, Juj3 improved photosynthesis. Field trial analyses revealed that Juj3 exhibits satisfactory biocontrol efficacy in cabbage (51.4%) and Chinese cabbage (37.7%). Moreover, Juj3 could also enhance cabbage and Chinese cabbage biomass to improve the yield quality. These findings pave the way for future use of A. faecalis as biocontrol agents for clubroot and reveal the great potential of the rhizobacterium for plant growth-promoting applications in agriculture and horticulture.
Collapse
|
4
|
Moharana M, Pattanayak SK, Khan F. Identification of phytochemicals from Eclipta alba and assess their potentiality against Hepatitis C virus envelope glycoprotein: virtual screening, docking, and molecular dynamics simulation study. J Biomol Struct Dyn 2022:1-17. [PMID: 35694813 DOI: 10.1080/07391102.2022.2085804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatitis C virus has a major role in spreading chronic liver disease and hepatocellular carcinoma. Factors such as high costs, pharmacological side effects, and the development of drug resistance strains require the development of new and potentially effective antiviral to treat the various stages of Hepatitis C. Bioactive chemicals have been extracted from medicinal plants and are utilized by humans for the goal of maintaining a healthy lifestyle. The goal of this work is to recognize phytochemicals from Eclipta alba and assess their potentiality activity against the hepatitis C virus envelope glycoprotein using in silico approaches. Phytochemicals from Eclipta alba were virtually screened by Auto dock raccoon and 12 compounds were selected for molecular docking to probe the active binding site. The top two compounds based on the binding score like ecliptalbine and oleanolic acid with HCV E2 glycoprotein exhibit binding energy -8.88 and -8.02 kcal/mol, respectively. The chemicals' usefulness was reinforced by positive pharmacokinetic data. The phytocompounds were identified as potent HCV inhibitors based on the drug likeness and ADMET properties. Both ecliptalbine and oleanolic acid underwent molecular dynamics simulations to determine features such as RMSD, RMSF, SASA, hydrogen-bond number, and MM-PBSA-based binding free energy. From the molecular docking and molecular dynamics simulation study revealed that oleanolic acid obtained from Eclipta alba can be used as inhibitors against Hepatitis C. The identified inhibitor from our study will be study in vitro and in vivo studies to check their efficacy against Hepatitis C.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
5
|
Timalsina D, Devkota HP. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021; 11:1738. [PMID: 34827736 PMCID: PMC8615741 DOI: 10.3390/biom11111738] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Eclipta prostrata (L.) L. (Syn.: Eclipta alba (L.) Hassak, Family: Asteraceae) is an important medicinal plant in the tropical and subtropical regions. It is widely used in treating various diseases of skin, liver and stomach in India, Nepal, Bangladesh, and other countries. The main aim of this review was to collect and analyze the available information on traditional uses, phytoconstituents, and biological activities of E. prostrata. The scientific information was collected from the online bibliographic databases such as Scopus, MEDLINE/PubMed, Google Scholar, SciFinder, etc. and books and proceedings. The active phytochemicals were coumestan derivatives, phenolic acid derivatives, flavonoids, triterpenoid and steroid saponins, substituted thiophenes, etc. Various extracts and isolated compounds of E. prostrata showed a wide range of biological activities such as antimicrobial, anticancer, hepatoprotective, neuroprotective and hair growth promoting activities. Relatively a few studies have been performed to reveal the exact phytoconstituents responsible for their corresponding pharmacological activities. Future studies should focus on detailed mechanism based studies using animal models and clinical studies.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, 2-40-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 2021; 203:5345-5361. [PMID: 34387704 DOI: 10.1007/s00203-021-02481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.
Collapse
|
7
|
Five Fungal Pathogens Are Responsible for Bayberry Twig Blight and Fungicides Were Screened for Disease Control. Microorganisms 2020; 8:microorganisms8050689. [PMID: 32397322 PMCID: PMC7284972 DOI: 10.3390/microorganisms8050689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Bayberry (Myrica rubra) is a commercial fruit in China. For the past seven years, twig blight disease has been attacking bayberry plantations in Shantou City, Guangdong Province, China, leading to destructive damage and financial loss. In this study, five fungal species associated with twig dieback and stem blight were identified based on morphological characteristics combined with multilocus sequence analysis (MLSA) on the internal transcribed spacer (ITS) region, partial sequences of β-tubulin (tub2), translation elongation factor 1-α (tef1-α), large subunit ribosomal RNA (LSU) and small subunit ribosomal RNA (SSU) genes, which are Epicoccum sorghinum, Neofusicoccum parvum, Lasiodiplodia theobromae, Nigrospora oryzae and a Pestalotiopsis new species P. myricae. P. myricae is the chief pathogen in fields, based on its high isolation rate and fast disease progression after inoculation. To our knowledge, this is the first study reporting the above five fungi as the pathogens responsible for bayberry twig blight. Indoor screening of fungicides indicates that Prochloraz (copper salt) is the most promising fungicide for field application, followed by Pyraclostrobin, 15% Difenoconazole + 15% Propiconazole, Difenoconazole and Myclobutanil. Additionally, Bacillus velezensis strain 3–10 and zeamines from Dickeya zeae strain EC1 could be used as potential ecofriendly alternatives to control the disease.
Collapse
|