1
|
Huang J, Yang J, Miao Q, Olajide TM, Qian J, Liu H, Ou P, Liao X. Effect of Selenium Biofortification on Bioaccessibility, Antioxidant, and Antimicrobial Potentials of Phenolic Compounds in Germinated Black Soybean (
Glycine max
(L.) Merr). Cereal Chem 2022. [DOI: 10.1002/cche.10600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Jingyi Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | | | - Jiana Qian
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Haoyue Liu
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Pengcheng Ou
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences Shanghai University Shanghai 200444 China
| |
Collapse
|
2
|
Huang Y, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Fan B, Maesen P, Blecker C. Influence of Selenium Biofortification of Soybeans on Speciation and Transformation during Seed Germination and Sprouts Quality. Foods 2022; 11:foods11091200. [PMID: 35563923 PMCID: PMC9104096 DOI: 10.3390/foods11091200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Selenium (Se) biofortification during seed germination is important not only to meet nutritional demands but also to prevent Se-deficiency-related diseases by producing Se-enriched foods. In this study, we evaluated effects of Se biofortification of soybeans on the Se concentration, speciation, and species transformation as well as nutrients and bioactive compounds in sprouts during germination. Soybean (Glycine max L.) seedlings were cultivated in the dark in an incubator with controlled temperature and water conditions and harvested at different time points after soaking in Se solutions (0, 5, 10, 20, 40, and 60 mg/L). Five Se species and main nutrients in the sprouts were determined. The total Se content increased by 87.3 times, and a large portion of inorganic Se was transformed into organic Se during 24 h of germination, with 89.3% of the total Se was bound to soybean protein. Methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were the dominant Se species, MeSeCys decreased during the germination, but SeMet had opposite trend. Se biofortification increased contents of total polyphenol and isoflavonoid compounds and amino acids (both total and essential), especially in low-concentration Se treatment. In conclusion, Se-enriched soybean sprouts have promising potential for Se supplementation and as functional foods.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Correspondence:
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Philippe Maesen
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| |
Collapse
|
3
|
Huang J, Qian J, Wang S, Li Y, Zhai X, Olajide TM, Shen GX, Liao X. Effect of selenium biofortification on bioactive compounds and antioxidant activity in germinated black soybean. J Food Sci 2022; 87:1009-1019. [PMID: 35122243 DOI: 10.1111/1750-3841.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.
Collapse
Affiliation(s)
- Junyi Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiana Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shanshan Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingqiu Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaolin Zhai
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Garry X Shen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xianyan Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Buitimea‐Cantúa NE, Serna‐Saldívar SO. Effect of processing on the hydroxycinnamic acids, flavones, and cellular antioxidant activity of tortillas supplemented with sorghum bran. Cereal Chem 2020. [DOI: 10.1002/cche.10254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nydia E. Buitimea‐Cantúa
- Tecnologico de Monterrey Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Monterrey México
| | - Sergio O. Serna‐Saldívar
- Tecnologico de Monterrey Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Monterrey México
| |
Collapse
|
5
|
Escalante-Valdez MJ, Guardado-Félix D, Serna-Saldívar SO, Barrera-Arellano D, Chuck-Hernández C. Effects of Post Anthesis Foliar Application of Sodium Selenite to Soybeans ( Glycine max): Lipid Composition and Oil Stability. Biomolecules 2019; 9:E772. [PMID: 31771157 PMCID: PMC6995593 DOI: 10.3390/biom9120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/02/2022] Open
Abstract
This study aimed at determining whether applying selenium to soybean plants affected composition and oil oxidative stability of the seeds. Soybean was cultivated and sodium selenite (Selenite) added by foliar application (0, 200, or 300 g Selenite/Ha). Physical and chemical characterization was performed on the harvested seeds (thousand seed weight, bulk and true densities, fat, fiber, ash, protein, nitrogen free extract and selenium content). Soybean oil was tested in terms of Oxidation Induction Time (OIT), fatty acid, tocopherols, phytosterols, density, refractive index and saponification and iodine values. All seeds showed similar composition: crude fat (around 20%) and crude fiber (from 8.4 to 9.3%). Control seeds and those treated with 200 g Selenite/Ha contained higher protein concentration (37%), compared to the 300 g treatment (35.9%). All seeds showed similar ash content (7%). OIT values for both treatments were slightly lower (from 39.1 to 43.7 min) compared with 45.02 min in the control. Polyunsaturated fatty acids were higher for the 300 g Se/Ha (50.2%) compared with 48.2 to 49.4%of the other treatments. All samples showed similar phytosterols and tocopherols concentrations. Results showed that OIT values maintained an inverse relationship with selenium content, suggesting that foliar fertilization enhanced oil oxidation or acted as a pro-oxidant at the applied rates.
Collapse
Affiliation(s)
- María José Escalante-Valdez
- Tecnologico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnologico, C.P. 64849, Monterrey, N.L., Mexico; (M.J.E.-V.); (D.G.-F.); (S.O.S.-S.)
| | - Daniela Guardado-Félix
- Tecnologico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnologico, C.P. 64849, Monterrey, N.L., Mexico; (M.J.E.-V.); (D.G.-F.); (S.O.S.-S.)
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, C.P. 80000 Culiacan, Sinaloa, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnologico, C.P. 64849, Monterrey, N.L., Mexico; (M.J.E.-V.); (D.G.-F.); (S.O.S.-S.)
| | - Daniel Barrera-Arellano
- Department of Food Technology, Faculty of Food Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, P.O. Box 6121 Campinas, Brazil;
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnologico, C.P. 64849, Monterrey, N.L., Mexico; (M.J.E.-V.); (D.G.-F.); (S.O.S.-S.)
| |
Collapse
|