1
|
Serio F, Imbriani G, Girelli CR, Miglietta PP, Scortichini M, Fanizzi FP. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1433. [PMID: 38891241 PMCID: PMC11175074 DOI: 10.3390/plants13111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In 2013, an outbreak of Xylella fastidiosa (Xf) was identified for the first time in Europe, in the extreme south of Italy (Apulia, Salento territory). The locally identified subspecies pauca turned out to be lethal for olive trees, starting an unprecedented phytosanitary emergency for one of the most iconic cultivations of the Mediterranean area. Xf pauca (Xfp) is responsible for a severe disease, the olive quick decline syndrome (OQDS), spreading epidemically and with dramatic impact on the agriculture, the landscape, the tourism and the cultural heritage of this region. The bacterium, transmitted by insects that feed on xylem sap, causes rapid wilting in olive trees due to biofilm formation, which obstructs the plant xylematic vessels. The aim of this review is to perform a thorough analysis that offers a general overview of the published work, from 2013 to December 2023, related to the Xfp outbreak in Apulia. This latter hereto has killed millions of olive trees and left a ghostly landscape with more than 8000 square kilometers of infected territory, that is 40% of the region. The majority of the research efforts made to date to combat Xfp in olive plants are listed in the present review, starting with the early attempts to identify the bacterium, the investigations to pinpoint and possibly control the vector, the assessment of specific diagnostic techniques and the pioneered therapeutic approaches. Interestingly, according to the general set criteria for the preliminary examination of the accessible scientific literature related to the Xfp outbreak on Apulian olive trees, fewer than 300 papers can be found over the last decade. Most of them essentially emphasize the importance of developing diagnostic tools that can identify the disease early, even when infected plants are still asymptomatic, in order to reduce the risk of infection for the surrounding plants. On the other hand, in the published work, the diagnostic focus (57%) overwhelmingly encompasses all other possible investigation goals such as vectors, impacts and possible treatments. Notably, between 2013 and 2023, only 6.3% of the literature reports addressing the topic of Xfp in Apulia were concerned with the application of specific treatments against the bacterium. Among them, those reporting field trials on infected plants, including simple pruning indications, were further limited (6%).
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| |
Collapse
|
2
|
Surano A, del Grosso C, Musio B, Todisco S, Giampetruzzi A, Altamura G, Saponari M, Gallo V, Mastrorilli P, Boscia D, Saldarelli P. Exploring the xylem-sap to unravel biological features of Xylella fastidiosa subspecies pauca ST53 in immune, resistant and susceptible crop species through metabolomics and in vitro studies. FRONTIERS IN PLANT SCIENCE 2024; 14:1343876. [PMID: 38312355 PMCID: PMC10834688 DOI: 10.3389/fpls.2023.1343876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.
Collapse
Affiliation(s)
- Antony Surano
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Carmine del Grosso
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Annalisa Giampetruzzi
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Giuseppe Altamura
- CRSFA-Centro Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| |
Collapse
|
3
|
Ahmed E, Musio B, Todisco S, Mastrorilli P, Gallo V, Saponari M, Nigro F, Gualano S, Santoro F. Non-Targeted Spectranomics for the Early Detection of Xylella fastidiosa Infection in Asymptomatic Olive Trees, cv. Cellina di Nardò. Molecules 2023; 28:7512. [PMID: 38005234 PMCID: PMC10672767 DOI: 10.3390/molecules28227512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive trees in southern Italy since around 2009. During the disease, caused by Xylella fastidiosa subsp. pauca sequence type ST53 (Xf), the flow of water and nutrients within the trees is significantly compromised. Initially, infected trees may not show any symptoms, making early detection challenging. In this study, young artificially infected plants of the susceptible cultivar Cellina di Nardò were grown in a controlled environment and co-inoculated with additional xylem-inhabiting fungi. Asymptomatic leaves of olive plants at an early stage of infection were collected and analyzed using nuclear magnetic resonance (NMR), hyperspectral reflectance (HSR), and chemometrics. The application of a spectranomic approach contributed to shedding light on the relationship between the presence of specific hydrosoluble metabolites and the optical properties of both asymptomatic Xf-infected and non-infected olive leaves. Significant correlations between wavebands located in the range of 530-560 nm and 1380-1470 nm, and the following metabolites were found to be indicative of Xf infection: malic acid, fructose, sucrose, oleuropein derivatives, and formic acid. This information is the key to the development of HSR-based sensors capable of early detection of Xf infections in olive trees.
Collapse
Affiliation(s)
- Elhussein Ahmed
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Maria Saponari
- Istituto Per la Protezione Sostenibile Delle Piante, CNR, Via Amendola 122/D, I-70126 Bari, Italy;
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy;
| | - Stefania Gualano
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Franco Santoro
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| |
Collapse
|
4
|
Hussain M, Girelli CR, Verweire D, Oehl MC, Avendaño MS, Scortichini M, Fanizzi FP. 1H-NMR Metabolomics Study after Foliar and Endo-Therapy Treatments of Xylella fastidiosa subsp. pauca Infected Olive Trees: Medium Time Monitoring of Field Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1946. [PMID: 37653863 PMCID: PMC10221468 DOI: 10.3390/plants12101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 09/02/2023]
Abstract
Here we report the medium-term effects of foliar spray and endo-therapy treatments with different doses of a Cu/Zn citric acid biocomplex (Dentamet®) in Xylella fastidiosa infected olive trees of Salento, Apulia region (South-east Italy). Leaf extract samples from field-treated 150 years old olive trees cvs Ogliarola salentina and Cellina di Nardò were studied by 1H NMR-based metabolomics. The result of different applications of Dentamet® endo-therapy after 60, 120 and 180 days in comparison with traditional foliar spray treatment and water injection as a control have been investigated. The metabolic profile analyses, performed by 1H NMR-based metabolomic approach, indicated plant metabolites variations connected to the disease progression such as mannitol, quinic acid, and oleuropein related compounds. The best results, in terms of discrimination of the metabolic profiles with respect to water injection, were found for monthly endo-therapy treatments. Dentamet® foliar application demonstrated more specific time related progressive effectiveness with respect to intravascular treatments. Therefore, besides a possible more effective performance of endo-therapy with respect to foliar treatments, the need of further doses/frequencies trimming to obtain long-term results was also assessed. The present field studies confirmed the indication of Dentamet® effectiveness in metabolic variation induction, potentially linked with reducing the X. fastidiosa subspecies pauca related Olive Quick Decline Syndrome (OQDS) symptoms development.
Collapse
Affiliation(s)
- Mudassar Hussain
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Dimitri Verweire
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Michael C. Oehl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Maier S. Avendaño
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.C.O.); (M.S.A.)
| | - Marco Scortichini
- Council for Agricultural Research and Agricultural Economic Analyses (CREA), Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
5
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
6
|
Farag MA, Mohamed TA, El-Hawary EA, Abdelwareth A. Metabolite Profiling of Premium Civet Luwak Bio-Transformed Coffee Compared with Conventional Coffee Types, as Analyzed Using Chemometric Tools. Metabolites 2023; 13:metabo13020173. [PMID: 36837792 PMCID: PMC9960232 DOI: 10.3390/metabo13020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Luwak (civet) coffee is one of the most precious and exotic coffee commodities in the world. It has garnered an increasing reputation as the rarest and most expensive coffee, with an annual production. Many targeted analytical techniques have been reported for the discrimination of specialty coffee commodities, such as Luwak coffee, from other ordinary coffee. This study presents the first comparative metabolomics approach for Luwak coffee analysis compared to other coffee products, targeting secondary and aroma metabolites using nuclear magnetic resonance (NMR), gas chromatography (GC), or liquid chromatography (LC) coupled with mass spectrometry (MS). Chemometric modeling of these datasets showed significant classification among all samples and aided in identifying potential novel markers for Luwak coffee from other coffee samples. Markers have indicated that C. arabica was the source of Luwak coffee, with several new markers being identified, including kahweol, chlorogenic acid lactones, and elaidic acid. Aroma profiling using solid-phase micro-extraction (SPME) coupled with GC/MS revealed higher levels of guaiacol derivatives, pyrazines, and furans in roasted Luwak coffee compared with roasted C. arabica. Quantification of the major metabolites was attempted using NMR for Luwak coffee to enable future standardization. Lower levels of alkaloids (caffeine 2.85 µg/mg, trigonelline 0.14 µg/mg, and xanthine 0.03 µg/mg) were detected, compared with C. arabica. Other metabolites that were quantified in civet coffee included kahweol and difurfuryl ether at 1.37 and 0.15 µg/mg, respectively.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
- Correspondence:
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Giza 12622, Egypt
| | - Enas A. El-Hawary
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Amr Abdelwareth
- Novartis Pharma, Cairo Site, El-Sawah St., Cairo 11551, Egypt
| |
Collapse
|
7
|
Catalano A, Ceramella J, Iacopetta D, Mariconda A, Scali E, Bonomo MG, Saturnino C, Longo P, Aquaro S, Sinicropi MS. Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees. Antibiotics (Basel) 2022; 11:947. [PMID: 35884201 PMCID: PMC9312276 DOI: 10.3390/antibiotics11070947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| |
Collapse
|
8
|
Scala V, Salustri M, Loreti S, Pucci N, Cacciotti A, Tatulli G, Scortichini M, Reverberi M. Mass Spectrometry-Based Targeted Lipidomics and Supervised Machine Learning Algorithms in Detecting Disease, Cultivar, and Treatment Biomarkers in Xylella fastidiosa subsp. pauca-Infected Olive Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:833245. [PMID: 35528940 PMCID: PMC9072861 DOI: 10.3389/fpls.2022.833245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In 2013, Xylella fastidiosa (Xf) was detected for the first time in Apulia and, subsequently, recognized as the causal agent of the olive quick decline syndrome (OQDS). To contain the disease, the olive germplasm was evaluated for resistance to Xf, identifying cultivars with different susceptibility to the pathogen. Regarding this, the resistant cultivar Leccino has generally a lower bacterial titer compared with the susceptible cultivar Ogliarola salentina. Among biomolecules, lipids could have a pivotal role in the interaction of Xf with its host. In the grapevine Pierce's disease, fatty acid molecules, the diffusible signaling factors (DSFs), act as regulators of Xf lifestyle and are crucial for its virulence. Other lipid compounds derived from fatty acid oxidation, namely, oxylipins, can affect, in vitro, biofilm formation in Xf subsp. pauca (Xfp) strain De Donno, that is, the strain causing OQDS. In this study, we combined high-performance liquid chromatography-mass spectrometry-MS-based targeted lipidomics with supervised learning algorithms (random forest, support vector machine, and neural networks) to classify olive tree samples from Salento. The dataset included samples from either OQDS-positive or OQDS-negative olive trees belonging either to cultivar Ogliarola salentina or Leccino treated or not with the zinc-copper-citric acid biocomplex Dentamet®. We built classifiers using the relative differences in lipid species able to discriminate olive tree samples, namely, (1) infected and non-infected, (2) belonging to different cultivars, and (3) treated or untreated with Dentamet®. Lipid entities emerging as predictors of the thesis are free fatty acids (C16:1, C18:1, C18:2, C18:3); the LOX-derived oxylipins 9- and 13-HPOD/TrE; the DOX-derived oxylipin 10-HPOME; and diacylglyceride DAG36:4(18:1/18:3).
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Manuel Salustri
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| |
Collapse
|
9
|
Girelli CR, Hussain M, Verweire D, Oehl MC, Massana-Codina J, Avendaño MS, Migoni D, Scortichini M, Fanizzi FP. Agro-active endo-therapy treated Xylella fastidiosa subsp. pauca-infected olive trees assessed by the first 1H-NMR-based metabolomic study. Sci Rep 2022; 12:5973. [PMID: 35396514 PMCID: PMC8993878 DOI: 10.1038/s41598-022-09687-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium causing a range of economically important plant diseases in hundreds of crops. Over the last decade, a severe threat due to Olive Quick Decline Syndrome (OQDS), caused by Xylella fastidiosa subspecies pauca, affected the Salento olive groves (Apulia, South-East Italy). Very few phyto-therapeutics, including a Zn/Cu citric acid biocomplex foliar treatment, were evaluated to mitigate this disease. However, the traditional foliar applications result in the agro-actives reaching only partially their target. Therefore the development of novel endo-therapeutic systems was suggested. Metabolite fingerprinting is a powerful method for monitoring both, disease progression and treatment effects on the plant metabolism, allowing biomarkers detection. We performed, for the first time, short-term monitoring of metabolic pathways reprogramming for infected Ogliarola salentina and Cima di Melfi olive trees after precision intravascular biocomplex delivery using a novel injection system. Upon endo therapy, we observed specific variations in the leaf content of some metabolites. In particular, the 1H NMR-based metabolomics approach showed, after the injection, a significant decrease of both the disease biomarker quinic acid and mannitol with simultaneous increase of polyphenols and oleuropein related compounds in the leaf’s extracts. This combined metabolomics/endo-therapeutic methodology provided useful information in the comprehension of plant physiology for future applications in OQDS control.
Collapse
Affiliation(s)
- Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Mudassar Hussain
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | | | | | | | | | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134, Rome, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy.
| |
Collapse
|
10
|
Carvalho IGB, Merfa MV, Teixeira-Silva NS, Martins PMM, Takita MA, de Souza AA. Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Front Microbiol 2021; 12:712564. [PMID: 34616378 PMCID: PMC8488296 DOI: 10.3389/fmicb.2021.712564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Copper-based compounds are widely used in agriculture as a chemical strategy to limit the spread of multiple plant diseases; however, the continuous use of this heavy metal has caused environmental damage as well as the development of copper-resistant strains. Thus, it is important to understand how the bacterial phytopathogens evolve to manage with this metal in the field. The MqsRA Toxin-Antitoxin system has been recently described for its function in biofilm formation and copper tolerance in Xylella fastidiosa, a plant-pathogen bacterium responsible for economic damage in several crops worldwide. Here we identified differentially regulated genes by X. fastidiosa MqsRA by assessing changes in global gene expression with and without copper. Results show that mqsR overexpression led to changes in the pattern of cell aggregation, culminating in a global phenotypic heterogeneity, indicative of persister cell formation. This phenotype was also observed in wild-type cells but only in the presence of copper. This suggests that MqsR regulates genes that alter cell behavior in order to prime them to respond to copper stress, which is supported by RNA-Seq analysis. To increase cellular tolerance, proteolysis and efflux pumps and regulator related to multidrug resistance are induced in the presence of copper, in an MqsR-independent response. In this study we show a network of genes modulated by MqsR that is associated with induction of persistence in X. fastidiosa. Persistence in plant-pathogenic bacteria is an important genetic tolerance mechanism still neglected for management of phytopathogens in agriculture, for which this work expands the current knowledge and opens new perspectives for studies aiming for a more efficient control in the field.
Collapse
Affiliation(s)
| | - Marcus Vinicius Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | | | | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, Brazil
| | | |
Collapse
|
11
|
Scortichini M, Loreti S, Pucci N, Scala V, Tatulli G, Verweire D, Oehl M, Widmer U, Codina JM, Hertl P, Cesari G, De Caroli M, Angilè F, Migoni D, Del Coco L, Girelli CR, Dalessandro G, Fanizzi FP. Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy). Pathogens 2021; 10:668. [PMID: 34072394 PMCID: PMC8228964 DOI: 10.3390/pathogens10060668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-Dentamet®-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.
Collapse
Affiliation(s)
- Marco Scortichini
- Research Centre for Olive, Fruit Trees and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Nicoletta Pucci
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Valeria Scala
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy; (S.L.); (N.P.); (V.S.); (G.T.)
| | - Dimitri Verweire
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Michael Oehl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Urs Widmer
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Josep Massana Codina
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | - Peter Hertl
- Invaio Sciences, Cambridge, MA 02138, USA; (D.V.); (M.O.); (U.W.); (J.M.C.); (P.H.)
| | | | - Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Giuseppe Dalessandro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Monteroni-Lecce, Italy; (M.D.C.); (F.A.); (D.M.); (L.D.C.); (C.R.G.); (G.D.); (F.P.F.)
| |
Collapse
|
12
|
Olive Cultivars Susceptible or Tolerant to Xylella fastidiosa Subsp. pauca Exhibit Mid-Term Different Metabolomes upon Natural Infection or a Curative Treatment. PLANTS 2021; 10:plants10040772. [PMID: 33920775 PMCID: PMC8103516 DOI: 10.3390/plants10040772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Xylella fastidiosa subsp. pauca, is a bacterial phytopathogen associated with the "olive quick decline syndrome" (OQDS) causing severe economic losses to olive groves in Salento area (Apulia, Italy). In a previous work, we analyzed by 1H-NMR the metabolic pattern of naturally infected Ogliarola salentina and Cellina di Nardò susceptible cultivars untreated and treated with a zinc-copper citric acid biocomplex and we observed the treatment related variation of the disease biomarker quinic acid. In this study, we focused also on the Leccino cultivar, known to exhibit tolerance to the disease progression. The 1H-NMR-based metabolomic approach was applied with the aim to characterize the overall metabolism of tolerant Leccino in comparison with the susceptible cultivars Ogliarola salentina and Cellina di Nardò under periodic mid-term treatment. In particular, we studied the leaf extract molecular patterns of naturally infected trees untreated and treated with the biocomplex. The metabolic Leccino profiles were analyzed for the first time and compared with those exhibited by the susceptible Cellina di Nardò and Ogliarola salentina cultivars. The study highlighted a specificity in the metabolic response of the tolerant Leccino compared to susceptible cultivars. These differences provide useful information to describe the defensive mechanisms underlying the change of metabolites as a response to the infection, and the occurrence of different levels of disease, season and treatment effects for olive cultivars.
Collapse
|
13
|
Jlilat A, Ragone R, Gualano S, Santoro F, Gallo V, Varvaro L, Mastrorilli P, Saponari M, Nigro F, D'Onghia AM. A non-targeted metabolomics study on Xylella fastidiosa infected olive plants grown under controlled conditions. Sci Rep 2021; 11:1070. [PMID: 33441842 PMCID: PMC7806896 DOI: 10.1038/s41598-020-80090-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
In the last decade, the bacterial pathogen Xylella fastidiosa has devastated olive trees throughout Apulia region (Southern Italy) in the form of the disease called "Olive Quick Decline Syndrome" (OQDS). This study describes changes in the metabolic profile due to the infection by X. fastidiosa subsp. pauca ST53 in artificially inoculated young olive plants of the susceptible variety Cellina di Nardò. The test plants, grown in a thermo-conditioned greenhouse, were also co-inoculated with some xylem-inhabiting fungi known to largely occur in OQDS-affected trees, in order to partially reproduce field conditions in terms of biotic stress. The investigations were performed by combining NMR spectroscopy and MS spectrometry with a non-targeted approach for the analysis of leaf extracts. Statistical analysis revealed that Xylella-infected plants were characterized by higher amounts of malic acid, formic acid, mannitol, and sucrose than in Xylella-non-infected ones, whereas it revealed slightly lower amounts of oleuropein. Attention was paid to mannitol which may play a central role in sustaining the survival of the olive tree against bacterial infection. This study contributes to describe a set of metabolites playing a possible role as markers in the infections by X. fastidiosa in olive.
Collapse
Affiliation(s)
- Asmae Jlilat
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università Degli Studi Della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - Rosa Ragone
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy
| | - Stefania Gualano
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Franco Santoro
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy.
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy.
| | - Leonardo Varvaro
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università Degli Studi Della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
- Innovative Solutions S.R.L. - Spin Off del Politecnico Di Bari, Zona H 150/B, 70015, Noci, BA, Italy
| | - Maria Saponari
- Istituto Per La Protezione Sostenibile Delle Piante, CNR, SS Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Franco Nigro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università Degli Studi di Bari ″Aldo Moro″, Via Amendola 165/A, 70126, Bari, Italy
| | - Anna Maria D'Onghia
- Centre International de Hautes Etudes Agronomiques Méditerranéennes (CIHEAM) of Bari, Via Ceglie 9, 70010, Valenzano, BA, Italy
| |
Collapse
|
14
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
15
|
The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella Fastidiosa Subsp. Pauca: A Working Possibility of Restoration. SUSTAINABILITY 2020. [DOI: 10.3390/su12176700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In Salento, the olive agro-ecosystem has lasted more than 4000 years, and represents an invaluable local heritage for landscape, trade, and social traditions. The quarantine bacterium Xylella fastidiosa subsp. pauca was introduced in the area from abroad and has been widely threatening olive groves in the area. The successful eradication of quarantine phytopathogens requires a prompt identification of the causative agent at the new site, a restricted infected area, a highly effective local organization for crop uprooting and biological features of the micro-organism that would guarantee its complete elimination. However, at the time of the first record, these criteria were not met. Interdisciplinary studies showed that a zinc-copper-citric acid biocomplex allowed a consistent reduction of field symptoms and pathogen cell concentration within infected olive trees. In this perspective article, it is briefly described the implementation of control strategies in some olive farms of Salento. The protocol includes spray treatment with the biocomplex during spring and summer, regular pruning of the trees and mowing of soil between February and April to reduce the juvenile of the insect vector(s). Thus far, more than 500 ha have begun to follow this eco-friendly strategy within the “infected” and “containment” areas of Salento.
Collapse
|
16
|
Del Coco L, Migoni D, Girelli CR, Angilè F, Scortichini M, Fanizzi FP. Soil and Leaf Ionome Heterogeneity in Xylella fastidiosa Subsp. Pauca-Infected, Non-Infected and Treated Olive Groves in Apulia, Italy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E760. [PMID: 32560583 PMCID: PMC7356509 DOI: 10.3390/plants9060760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Xylella fastidiosa subsp. pauca is responsible for the "olive quick decline syndrome" (OQDS) in Salento (Apulia). The main epidemiological aspects of the syndrome are related to the pathogen spread and survival in the area, and to the biology of the insect vector. The assessment of the macro and microelements content (i.e., ionome) in soil and leaves could provide basic and useful information. Indeed, knowledge of host ionomic composition and the possibility of its modification could represent a potential tool for the management of diseases caused by X. fastidiosa. Therefore, soil and leaf ionomes of naturally infected, not infected, and zinc-copper-citric acid biocomplex treated trees of different areas of Apulia and the bordering Basilicata regions were compared. We observed that soil and leaf ionomic composition of olive farms growing in the pathogen-free areas north of the Salento Barletta-Andria-Trani BAT (Apulia) and Potenza PZ (Basilicata, Apulia bordering region) provinces is significantly different from that shown by the infected olive groves of the Salento areas (LE, BR, TA provinces). In particular, a higher content of zinc and copper both in soil and leaves was found in the studied northern areas in comparison to the southern areas. This finding could partly explain the absence of OQDS in those areas. In the infected Salento areas, the leaf ionomic profile resulted as being markedly different for the biocomplex treated compared to the untreated trees. A higher zinc content in leaves characterized treated with respect to untreated trees. On the other hand, among the not-infected trees, Xylella-resistant Leccino showed higher manganese content when compared with the higher pathogen sensitive Ogliarola salentina and Cellina di Nardò. According to these results, soil and olive leaf ionome could provide basic information for the epidemiologic study and possible control of X. f. subsp. pauca in Apulia.
Collapse
Affiliation(s)
- Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit Trees and Citrus Crops, Via di Fioranello, 52, I-00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
- University of Salento Local Unit of Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Via Celso Ulpiani, 27-70126 Bari, Italy
| |
Collapse
|
17
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|