1
|
Rigi Karvandri A, Mehraban A, Ganjali HR, Miri KH, Mobasser HR. The biochemical properties of Rosmarinus officinalis L. affected by irrigation water amount and quality. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6903-6913. [PMID: 37145240 DOI: 10.1007/s10653-023-01584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Water deficiency, especially in the arid and semi-arid areas, necessitates the proper water use and recycling. The objective was to investigate the effects of deficit irrigation as well as treated wastewater on the biochemical properties of Rosmarinus officinalis L., grown in the arid area of Iranshahr, Iran. A split-split plot design on the basis of a complete randomized block design with three replicates was conducted in 2017. Irrigation water treatments of (I1 = 100% of field capacity, FC), 75% of FC (I2), and 50% of FC (I3) as main plots, reduced (S1), and partial irrigation (S2), as sub-plots, and well water (Q1), treated wastewater (Q2), and the combination of Q1 and Q2 (Q3, 50% + 50%), as sub-sub plots, were tested. Plant biochemical properties including proline (Pr), soluble sugars (SS), and essential oil volume (V) and yield (Y) as well as water use efficiency (WUE) were determined. The I2, treatment, compared with I1, increased Pr, SS, V, Y and WUE by 34.4, 31.9, 52.6, 34.3, and 48.1%, respectively. The S2 treatment also increased plant biochemical properties more than 45% related to S1, and Q2 significantly enhanced the measured parameters compared with Q1 and Q3. Treated wastewater improved the essential oil yield of the plant in water deficit conditions. Accordingly, under deficit water conditions, treatment I2S2, and in the case of unfavorable water sources and deficit water conditions, treatment I2Q2 are recommendable to alleviate water stress and improve the biochemical properties of Rosmarinus officinalis L. in the arid areas.
Collapse
Affiliation(s)
- A Rigi Karvandri
- Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - A Mehraban
- Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran.
| | - H R Ganjali
- Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - K H Miri
- Balochistan Agriculture Research Center, Quetta, Pakistan
| | - H R Mobasser
- Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| |
Collapse
|
2
|
Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Moustakas M, Ahmad P. 5-Aminolevulinic Acid Induces Chromium [Cr(VI)] Tolerance in Tomatoes by Alleviating Oxidative Damage and Protecting Photosystem II: A Mechanistic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:502. [PMID: 36771587 PMCID: PMC9920640 DOI: 10.3390/plants12030502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H2O2) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment. Chromium alone decreased plant biomass and photosynthetic pigments, but increased oxidative stress markers, i.e., H2O2 and lipid peroxidation (as MDA equivalent). Electrolyte leakage (EL), NO, nitrate reductase (NR), phytochelatins (PCs), glutathione (GSH), and enzymatic and non-enzymatic antioxidants were also increased. Foliar application of 5-ALA before Cr treatment improved plant growth and photosynthetic pigments, diminished H2O2, MDA content, and EL, and resulted in additional enhancements of enzymatic and non-enzymatic antioxidants, NR activity, and NO synthesis. In Cr-treated tomato seedlings, 5-ALA enhanced GSH and PCs, which modulated Cr sequestration to make it nontoxic. 5-ALA-induced Cr tolerance was further enhanced by sodium nitroprusside (SNP), a NO donor. When sodium tungstate (ST), a NR inhibitor, was supplied together with 5-ALA to Cr-treated plants, it eliminated the beneficial effects of 5-ALA by decreasing NR activity and NO synthesis, while the addition of SNP inverted the adverse effects of ST. We conclude that the mechanism by which 5-ALA induced Cr tolerance in tomato seedlings is mediated by NR-generated NO. Thus, NR and NO are twin players, reducing Cr toxicity in tomato plants via antioxidant signalling cascades.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54600, Pakistan
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Parvaiz Ahmad
- Department of Botany, GDC, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
3
|
Franzolin MR, Lopes IS, Courrol DDS, de Souza Barreto S, Courrol LC. Synthesis, characterization, antimicrobial activity, and toxicity evaluation of aminolevulinic acid-silver and silver-iron nanoparticles for potential applications in agriculture. RSC Adv 2022; 12:30094-30103. [PMID: 36329930 PMCID: PMC9585435 DOI: 10.1039/d2ra05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Aminolevulinic acid (ALA) is considered one of the most critical plants growth regulators and essential precursors for chlorophyll biosynthesis; besides, its photodynamic activity can be used to exterminate larvae and microorganisms in plants and soil. Silver nanoparticles (AgNPs) have unique physicochemical properties and potent antimicrobial, antiviral, and antifungal activities, and in agriculture, their application as nanopesticides has been proposed. In this study, silver and silver–iron nanoparticles capped/stabilized with aminolevulinic acid (ALAAgNPs and ALAAgFeNPs) were synthesized by the photoreduction method and characterized by UV-vis spectroscopy, transmission electron microscopy, and zeta potential analysis. The kinetics of 1O2 generation from ALAAgFeNPs were obtained. The ALANP toxicity was evaluated on stalks of E. densa by observing cell morphology changes and measuring chlorophyll content compared with water-treated plants. Antimicrobial activity was tested against E. coli, P. aeruginosa, and Candida albicans. The results suggested that ALANPs (prepared with [AgNO3] ≤ 0.2 mM and [ALA] ≤ 0.4 mM) could be suitable for applications in the agricultural sector. The presence of ∼0.3 mmol of iron in ALAAgNPs synthesis increased cell uptake and chlorophyll synthesis. ALA is a natural metabolite in all living cells and possesses low toxicity. ALANPs exhibit high antimicrobial activity, promote plant growth and have the potential to show photodynamic herbicidal properties under solar illumination.![]()
Collapse
Affiliation(s)
| | - Isabela Santos Lopes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São PauloDiademaSão PauloBrazil
| | | | | | - Lilia Coronato Courrol
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Física, Universidade Federal de São PauloDiademaSão PauloBrazil
| |
Collapse
|
4
|
Brilli F, Pignattelli S, Baraldi R, Neri L, Pollastri S, Gonnelli C, Giovannelli A, Loreto F, Cocozza C. Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Arundo donax. Int J Mol Sci 2022; 23:4311. [PMID: 35457125 PMCID: PMC9028702 DOI: 10.3390/ijms23084311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
| | - Sara Pignattelli
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Institute of Biosciences and BioResources, National Research Council of Italy (IBBR-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Rita Baraldi
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), Via Gobetti 101, 40129 Bologna, Italy; (R.B.); (L.N.)
| | - Luisa Neri
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), Via Gobetti 101, 40129 Bologna, Italy; (R.B.); (L.N.)
| | - Susanna Pollastri
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Via Micheli 1, 50121 Firenze, Italy;
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via Madonna del Piano 10, 5001 Sesto Fiorentino, Italy;
| | - Francesco Loreto
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Department of Biology, University of Naples “Federico II”, Via Cinthia 7, 80126 Napoli, Italy
| | - Claudia Cocozza
- Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.P.); (S.P.); (F.L.); (C.C.)
- Department of Agriculture Food Environment and Forestry, University of Florence, Via San Bon-Aventura 13, 50145 Firenze, Italy
| |
Collapse
|
5
|
Effect of 5-Aminolevulinic Acid (5-ALA) on Leaf Chlorophyll Fast Fluorescence Characteristics and Mineral Element Content of Buxus megistophylla Grown along Urban Roadsides. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is well known that trees grown on roadsides suffer from stressful environments, including poor soils, bad weather, and harmful gases from automobile exhaust. Improving the adaptability of roadside trees to adverse environments is important for urban management. An experiment was carried out with six-year-old Buxus megistophylla Levl. hedgerows, where 20 mg/L 5-aminolevulinic acids (5-ALA) solution was sprayed on the blade surface at the end of April. Three months later, plant morphology, chlorophyll fast fluorescence characteristics, antioxidant enzyme activities and the mineral element content were investigated. The results showed that leaf size and thickness were significantly greater with 5-ALA treatment, and the leaf color was also greener than those of the control. 5-ALA treatment significantly promoted the electron transfer activity of the PSII reaction center on the donor side, the reaction center itself and the receptor side. It reduced energy dissipation through the heat with increased photochemical quantum yields. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in leaves and roots, were stimulated by 5-ALA treatment. The content of soluble sugars and free proline in leaves was significantly increased by 5-ALA treatment, as were the absorption and accumulation of several kinds of mineral nutrient elements, such as nitrogen, phosphate, calcium, magnesium, iron, copper and boron. Additionally, 5-ALA application significantly increased the content of cadmium, mercury, chromium and lead in the roots but decreased them in the leaves. This implies that 5-ALA may induce a mechanism in B. megistophylla in which toxic elements were intercepted in roots to avoid accumulation in leaves, which ensured healthy growth of the aboveground tissues. 5-ALA may regulate the absorption and utilization of mineral nutrient elements in soil with the interception of toxic heavy metal elements in roots, promote leaf photosynthetic performance, induce the accumulation of soluble sugars and free proline, and improve the antioxidant enzyme systems for plants to adapt to the stressful environment of urban roads. These results provide a basis for 5-ALA applications alongside city roads.
Collapse
|
6
|
Antiproliferative, Antimicrobial, and Antifungal Activities of Polyphenol Extracts from Ferocactus Species. Processes (Basel) 2020. [DOI: 10.3390/pr8020138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, obtained from natural resources, may possess important pharmacological effects. The polyphenolic profiles of the stem extracts of six Ferocactus species (sp.): F. gracilis, F. pottsii, F. herrerae, F. horridus, F. glaucescens, and F. emoryi, were measured using high-performance liquid chromatography (HPLC) with diode-array detection (DAD). Additionally, anticancer, antibacterial, and antifungal activities were examined. Results showed the presence of high to moderate amounts of polyphenols in the extracts (phenolic acids: Protocatechuic acid, 3,4-dihydroxyphenylacetic acid, caffeic acid, and vanillic acid; flavonoids: Rutoside and quercitrin). The highest amounts of 3,4-dihydroxyphenylacetic acid were found in F. glaucescens ((132.09 mg 100 g−1 dry weight (DW)), F. pottsii (75.71 mg 100 g−1 DW), and F. emoryi (69.14 mg 100 g−1 DW) while rutoside content was highest in F. glaucescens (107.66 mg 100 g−1 DW). Maximum antiproliferative activities were observed against HeLa and Jurkat cancer cells, with F. glaucescens, F. emoryi, and F. pottsii showing the highest anticancer activity. Most bacteria were sensitive to Ferocactus sp. stem extracts. Escherichia coli and Staphylococcus aureus were the most sensitive. Excellent antifungal effects were observed against Aspergillus ochraceus and A. niger. However, Penicillium funiculosum, P. ochrochloron, and Candida albicans were relatively resistant. This is the first study reporting novel sources of polyphenols in Ferocactus sp. with anticancer and antimicrobial activities.
Collapse
|
7
|
Erratum: Elansary et al., 5-Aminolevulinic Acid and Soil Fertility Enhance the Resistance of Rosemary to Alternaria dauci and Rhizoctonia solani and Modulate Plant Biochemistry. Plants 2019, 8, 585. PLANTS 2019; 9:plants9010050. [PMID: 31906230 PMCID: PMC7020144 DOI: 10.3390/plants9010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/26/2022]
|