1
|
Wu B, Sun M, Zhong T, Zhang J, Lei T, Yan Y, Chen X, Nan R, Sun F, Zhang C, Xi Y. Genome-wide identification and expression analysis of two-component system genes in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2024; 24:1014. [PMID: 39465364 PMCID: PMC11520087 DOI: 10.1186/s12870-024-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
The two-component system (TCS) consists of histidine kinase (HK), histidine phosphate transfer protein (HP), and response regulatory factor (RR). It is one of the most crucial components of signal transduction in plants, playing a significant role in regulating plant growth, development, and responses to various abiotic stresses. Although TCS genes have been extensively identified in a variety of plants, the genome-wide recognition and examination of TCS in switchgrass remain unreported. Accordingly, this study identified a total of 87 TCS members in the genome of switchgrass, comprising 20 HK(L)s, 10 HPs, and 57 RRs. Detailed analyses were also conducted on their gene structures, conserved domains, and phylogenetic relationships. Moreover, this study analysed the gene expression profiles across diverse organs and investigated their response patterns to adverse environmental stresses. Results revealed that 87 TCS genes were distributed across 18 chromosomes, with uneven distribution. Expansion of these genes in switchgrass was achieved through both fragment and tandem duplication. PvTCS members are relatively conservative in the evolutionary process, but the gene structure varies significantly. Various cis-acting elements, varying in types and amounts, are present in the promoter region of PvTCSs, all related to plant growth, development, and abiotic stress, due to the TCS gene structure. Protein-protein interaction and microRNA prediction suggest complex interactions and transcriptional regulation among TCS members. Additionally, most TCS members are expressed in roots and stems, with some genes showing organ-specific expression at different stages of leaf and inflorescence development. Under conditions of abiotic stress such as drought, low temperature, high temperature, and salt stress, as well as exogenous abscisic acid (ABA), the expression of most TCS genes is either stimulated or inhibited. Our systematic analysis could offer insight into the characterization of the TCS genes, and further the growth of functional studies in switchgrass.
Collapse
Affiliation(s)
- Baolin Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Mengyu Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tao Zhong
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Jiawei Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Tingshu Lei
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yuming Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Rui Nan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Bühring S, Brunner A, Heeb K, Mergard MP, Schmauck G, Jacob S. An array of signal-specific MoYpd1 isoforms determines full virulence in the pathogenic fungus Magnaporthe oryzae. Commun Biol 2024; 7:265. [PMID: 38438487 PMCID: PMC10912366 DOI: 10.1038/s42003-024-05941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Magnaporthe oryzae is placed first on a list of the world's top ten plant pathogens with the highest scientific and economic importance. The locus MGG_07173 occurs only once in the genome of M. oryzae and encodes the phosphotransfer protein MoYpd1p, which plays an important role in the high osmolarity glycerol (HOG) signaling pathway for osmoregulation. Originating from this locus, at least three MoYPD1 isoforms are produced in a signal-specific manner. The transcript levels of these MoYPD1-isoforms were individually affected by external stress. Salt (KCI) stress raised MoYPD1_T0 abundance, whereas osmotic stress by sorbitol elevates MoYPD1_T1 levels. In line with this, signal-specific nuclear translocation of green fluorescent protein-fused MoYpd1p isoforms in response to stress was observed. Mutant strains that produce only one of the MoYpd1p isoforms are less virulent, suggesting a combination thereof is required to invade the host successfully. In summary, we demonstrate signal-specific production of MoYpd1p isoforms that individually increase signal diversity and orchestrate virulence in M. oryzae.
Collapse
Affiliation(s)
- Sri Bühring
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Antonia Brunner
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Klemens Heeb
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Marius-Peter Mergard
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Greta Schmauck
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
3
|
Mongès A, Yaakoub H, Bidon B, Glévarec G, Héricourt F, Carpin S, Chauderon L, Drašarová L, Spíchal L, Binder BM, Papon N, Rochange S. Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:656-665. [PMID: 37851914 DOI: 10.1094/mpmi-05-23-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Signals are exchanged at all stages of the arbuscular mycorrhizal (AM) symbiosis between fungi and their host plants. Root-exuded strigolactones are well-known early symbiotic cues, but the role of other phytohormones as interkingdom signals has seldom been investigated. Here we focus on ethylene and cytokinins, for which candidate receptors have been identified in the genome of the AM fungus Rhizophagus irregularis. Ethylene is known from the literature to affect asymbiotic development of AM fungi, and in the present study, we found that three cytokinin forms could stimulate spore germination in R. irregularis. Heterologous complementation of a Saccharomyces cerevisiae mutant strain with the candidate ethylene receptor RiHHK6 suggested that this protein can sense and transduce an ethylene signal. Accordingly, its N-terminal domain expressed in Pichia pastoris displayed saturable binding to radiolabeled ethylene. Thus, RiHHK6 displays the expected characteristics of an ethylene receptor. In contrast, the candidate cytokinin receptor RiHHK7 did not complement the S. cerevisiae mutant strain or Medicago truncatula cytokinin receptor mutants and seemed unable to bind cytokinins, suggesting that another receptor is involved in the perception of these phytohormones. Taken together, our results support the hypothesis that AM fungi respond to a range of phytohormones and that these compounds bear multiple functions in the rhizosphere beyond their known roles as internal plant developmental regulators. Our analysis of two phytohormone receptor candidates also sheds new light on the possible perception mechanisms in AM fungi. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ayla Mongès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Hajar Yaakoub
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | | | - Gaëlle Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Lucie Chauderon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Šlechtitelů 27, Olomouc CZ-783 71, Palacký University, Olomouc, Czech Republic
| | - Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Nicolas Papon
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
4
|
Makhokh H, Lafite P, Larcher M, Lamblin F, Chefdor F, Depierreux C, Tanigawa M, Maeda T, Carpin S, Héricourt F. Searching for Osmosensing Determinants in Poplar Histidine-Aspartate Kinases. Int J Mol Sci 2023; 24:ijms24076318. [PMID: 37047295 PMCID: PMC10093795 DOI: 10.3390/ijms24076318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.
Collapse
Affiliation(s)
- Hanae Makhokh
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d’Orléans 7311, Université d’Orléans, BP 6759, 45067 Orléans Cedex 2, France
| | - Mélanie Larcher
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Françoise Chefdor
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Christiane Depierreux
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Mirai Tanigawa
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Shizuoka 431-3192, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Shizuoka 431-3192, Japan
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
- Correspondence: authors: (S.C.); (F.H.); Tel.: +33-2-3849-4804 (S.C.); +33-2-38-49-4806 (F.H.)
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d’Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
- Correspondence: authors: (S.C.); (F.H.); Tel.: +33-2-3849-4804 (S.C.); +33-2-38-49-4806 (F.H.)
| |
Collapse
|
5
|
Huo R, Zhao Y, Liu T, Xu M, Wang X, Xu P, Dai S, Cui X, Han Y, Liu Z, Li Z. Genome-wide identification and expression analysis of two-component system genes in sweet potato ( Ipomoea batatas L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1091620. [PMID: 36714734 PMCID: PMC9878860 DOI: 10.3389/fpls.2022.1091620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Two-component system (TCS), which comprises histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs), plays essential roles in regulating plant growth, development, and response to various environmental stimuli. TCS genes have been comprehensively identified in various plants, while studies on the genome-wide identification and analysis of TCS in sweet potato were still not reported. Therefore, in this study, a total of 90 TCS members consisting of 20 HK(L)s, 11 HPs, and 59 RRs were identified in the genome of Ipomoea batatas. Furthermore, their gene structures, conserved domains, and phylogenetic relationships were analyzed in detail. Additionally, the gene expression profiles in various organs were analyzed, and response patterns to adverse environmental stresses were investigated. The results showed that these 90 TCS genes were mapped on 15 chromosomes with a notably uneven distribution, and the expansion of TCS genes in sweet potato was attributed to both segmental and tandem duplications. The majority of the TCS genes showed distinct organ-specific expression profiles, especially in three types of roots (stem roots, fibrous roots, tuberous roots). Moreover, most of the TCS genes were either induced or suppressed upon treatment with abiotic stresses (drought, salinity, cold, heat) and exogenous phytohormone abscisic acid (ABA). In addition, the yeast-two hybrid system was used to reveal the HK-HP-RR protein-protein interactions. IbHP1, IbHP2, IbHP4, and IbHP5 could interact with three HKs (IbHK1a, IbHK1b, and IbHK5), and also interact with majority of the type-B RRs (IbRR20-IbRR28), while no interaction affinity was detected for IbHP3. Our systematic analyses could provide insights into the characterization of the TCS genes, and further the development of functional studies in sweet potato.
Collapse
Affiliation(s)
- Ruxue Huo
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yanshu Zhao
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Tianxu Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Meng Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaohua Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shengjie Dai
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Xiaoyu Cui
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogeny and Comparative Genomics, School of Life Sciences, Institute of Integrative Plant Biology, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
6
|
A Constitutively Active Cytokinin Receptor Variant Increases Cambial Activity and Stem Growth in Poplar. Int J Mol Sci 2022; 23:ijms23158321. [PMID: 35955458 PMCID: PMC9369088 DOI: 10.3390/ijms23158321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The cambial meristem is responsible for bark and wood formation in woody plants. The activity of the cambial meristem is controlled by various factors; one of them is the plant hormone cytokinin. Here, we have explored different approaches to genetically engineering cambial activity in poplar plants by the ectopic expression of a cytokinin biosynthesis gene with enhanced activity (named ROCK4) or of a gene encoding a constitutively active cytokinin receptor variant (ROCK3). Both genes are derived from Arabidopsis thaliana and were expressed in poplar trees under the control of their own promoter or the cambium-specific pHB8 promoter. pIPT3:ROCK4- and pHB8:ROCK4-expressing plants were smaller than wild-type plants and formed more lateral branches; pHB8:ROCK4 transgenic plants additionally showed an increased stem diameter. In contrast, pAHK3:ROCK3- and pHB8:ROCK3-expressing plants grew taller than wild type without an altered branching pattern and formed more cambial cells, leading to increased radial stem growth. The effectivity of ROCK3 when expressed in either secondary phloem cells or in cambial cells is consistent with a dual, tissue-autonomous and non-autonomous activity of cytokinin in regulating cambial activity. We propose ROCK3 as a novel gene to enhance biomass formation in woody plants.
Collapse
|
7
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
8
|
Djeghdir I, Chefdor F, Bertheau L, Koudounas K, Carqueijeiro I, Lemos Cruz P, Courdavault V, Depierreux C, Larcher M, Lamblin F, Héricourt F, Glévarec G, Oudin A, Carpin S. Evaluation of type-B RR dimerization in poplar: A mechanism to preserve signaling specificity? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111068. [PMID: 34763861 DOI: 10.1016/j.plantsci.2021.111068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Plants possess specific signaling pathways, such as the MultiStep Phosphorelay (MSP), which is involved in cytokinin and ethylene sensing, and light, drought or osmotic stress sensing. These MSP comprise histidine-aspartate kinases (HKs) as receptors, histidine phosphotransfer (HPts) proteins acting as phosphorelay proteins, and response regulators (RRs), some of which act as transcription factors (type-B RRs). In previous studies, we identified partners of the poplar osmosensing signaling pathway, composed of two HKs, three main HPts, and six type-B RRs. To date, it is unresolved as to how cytokinin or osmotic stress signal specificity is achieved in the MSP in order to generate specific responses. Here, we present a large-scale interaction study of poplar type-B RR dimerization. Using the two-hybrid assay, we were able to show the homodimerization of type-B RRs, the heterodimerization of duplicated type-B RRs, and surprisingly, a lack of interaction between some type-B RRs belonging to different duplicates. The lack of interaction of the duplicates RR12-14 and RR18-19, which are involved in the osmosensing pathway has been confirmed by BiFC experiments. This study reveals, for the first time, an overview of type-B RR dimerization in poplar and makes way for the hypothesis that signal specificity for cytokinin or osmotic stress could be in part due to the fact that it is impossible for specific type-B RRs to heterodimerize.
Collapse
Affiliation(s)
- I Djeghdir
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Chefdor
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - L Bertheau
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - K Koudounas
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - I Carqueijeiro
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - P Lemos Cruz
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - V Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - C Depierreux
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - M Larcher
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Lamblin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - F Héricourt
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France
| | - G Glévarec
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - A Oudin
- Biomolécules et Biotechnologies Végétales (BBV), EA 2106, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - S Carpin
- LBLGC, Université d'Orléans, INRAE, USC1328, 45067, Orléans, Cedex 2, France.
| |
Collapse
|
9
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Dau Thi Thanh Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tram Bao Tran
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tran Thi My Ngoc
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Quang Thien Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
| |
Collapse
|
10
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
11
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|