1
|
Deng Z, Wang J, Bennett JA, Shao W, An Z, He Y, Tian F, Wu Z. Biochar mediated differential regulation of oxidative stress and energy supply in Bacillus subtilis and Rhizoctonia solani. BIORESOURCE TECHNOLOGY 2025; 426:132317. [PMID: 40054752 DOI: 10.1016/j.biortech.2025.132317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Biochar (BC) significantly influences microbial metabolism, but its contrasting effects on different microorganisms remain unclear. This research explores the distinct regulatory mechanisms of BC on B. subtilis and R. solani. BC, consisting of micro-BC and nano-BC, generates reactive oxygen species (ROS), causing oxidative stress. Nano-BC can penetrate cells, leading to damage. In B. subtilis, BC initially inhibits growth, triggering endospore formation to expel nano-BC. B. subtilis secreted extracellular polymeric substances (EPS), which aggregated nano-BC, enhanced cell adhesion, and reduced intracellular ROS (from 2.0 to 1.5-fold), promoting growth later with BC's nutrient support. Conversely, R. solani cannot block nano-BC entry, activating mitophagy and suppressing genes like ATP1,2 involved in oxidative phosphorylation and tricarboxylic acid cycle. This results in ATP deficiency, collapses antioxidant system, raises ROS (from 3.9 to 4.5-fold), decreases cell survival, and leads to cell death. These findings highlight BC's selective microbial regulation and its potential for safe agricultural and environmental use.
Collapse
Affiliation(s)
- Zihe Deng
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China
| | - Jianwen Wang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon S7N5A8, Canada
| | - Wenjun Shao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Ziyuan An
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Fei Tian
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China; School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, PR China.
| |
Collapse
|
2
|
Wang R, Zhou T, Wang Y, Dong J, Bai Y, Huang X, Chen C. Exploring the allelopathic autotoxicity mechanism of ginsenosides accumulation under ginseng decomposition based on integrated analysis of transcriptomics and metabolomics. Front Bioeng Biotechnol 2024; 12:1365229. [PMID: 38515624 PMCID: PMC10955472 DOI: 10.3389/fbioe.2024.1365229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Continuous cropping obstacles seriously constrained the sustainable development of the ginseng industry. The allelopathic autotoxicity of ginsenosides is the key "trigger" of continuous cropping obstacles in ginseng. During harvest, the ginseng plants could be broken and remain in the soil. The decomposition of ginseng residue in soil is one of the important release ways of ginsenosides. Therefore, the allelopathic mechanism of ginsenosides through the decomposed release pathway needs an in-depth study. To investigate this allelopathic regulation mechanism, the integrated analysis of transcriptomics and metabolomics was applied. The prototype ginsenosides in ginseng were detected converse to rare ginsenosides during decomposition. The rare ginsenosides caused more serious damage to ginseng hairy root cells and inhibited the growth of ginseng hairy roots more significantly. By high-throughput RNA sequencing gene transcriptomics study, the significantly differential expressed genes (DEGs) were obtained under prototype and rare ginsenoside interventions. These DEGs were mainly enriched in the biosynthesis of secondary metabolites and metabolic pathways, phytohormone signal transduction, and protein processing in endoplasmic reticulum pathways. Based on the functional enrichment of DEGs, the targeted metabolomics analysis based on UPLC-MS/MS determination was applied to screen endogenous differential metabolized phytohormones (DMPs). The influence of prototype and rare ginsenosides on the accumulation of endogenous phytohormones was studied. These were mainly involved in the biosynthesis of diterpenoid, zeatin, and secondary metabolites, phytohormone signal transduction, and metabolic pathways. After integrating the transcriptomics and metabolomics analysis, ginsenosides could regulate the genes in phytohormone signaling pathways to influence the accumulation of JA, ABA, and SA. The conclusion was that the prototype ginsenosides were converted into rare ginsenosides by ginseng decomposition and released into the soil, which aggravated its allelopathic autotoxicity. The allelopathic mechanism was to intervene in the response regulation of genes related to the metabolic accumulation of endogenous phytohormones in ginseng. This result provides a reference for the in-depth study of continuous cropping obstacles of ginseng.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Guedes LM, Henríquez IAA, Sanhueza C, Rodríguez-Cerda L, Figueroa C, Gavilán E, Aguilera N. Alterations induced by Colomerus vitis on the structural and physiological leaf features of two grape cultivars. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:183-201. [PMID: 38358409 DOI: 10.1007/s10493-023-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes. These two grape cultivars are affected by Colomerus vitis, an eriophyid mite which establishes on their leaves and forms erinea, where the mite and its offspring obtain shelter and food. Although C. vitis has a cosmopolitan distribution, few studies of its impact on the structure and physiology of affected plants have been reported. Herein we aimed to evaluate the impact of C. vitis infection on the structural and physiological leaf performance of the two grape cultivars. The results showed tissue hyperplasia and cell hypertrophy in the epidermis, with an overproduction of trichomes and emergences in the abaxial epidermis in both cultivars. The anatomical changes were similar between the país and corinto cultivars, but they were proportionally greater in the país, where the area affected by the erinea were greater. No significant changes were detected in the photosynthetic pigment content; however, there was an increase in the total soluble sugars content in the erineum leaves of the país cultivar. Higher contents of anthocyanins and total phenols, as well as the presence of the pinocembrin in the corinto cultivar, which was less affected by C. vitis, could also indicate some resistance to mites' attack, which should be investigated in future studies.
Collapse
Affiliation(s)
- Lubia M Guedes
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Ignacio A A Henríquez
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Carolina Sanhueza
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Botánica, Laboratorio de Fisiología Vegetal, Universidad de Concepción, Casilla 160- C, Concepción, CP 4030000, Chile
| | - Lorena Rodríguez-Cerda
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Camilo Figueroa
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Elvis Gavilán
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile
| | - Narciso Aguilera
- Facultad de Ciencias Forestales, Departamento de Silvicultura, Laboratorio de Semioquímica Aplicada, Universidad de Concepción, Casilla 160-C, Concepción, CP 4030000, Chile.
| |
Collapse
|
4
|
Rodríguez-Cerda L, Guedes LM, Torres S, Gavilán E, Aguilera N. Phenolic Antioxidant Protection in the Initial Growth of Cryptocarya alba: Two Different Responses against Two Invasive Fabaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3584. [PMID: 37896047 PMCID: PMC10610473 DOI: 10.3390/plants12203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The allelophatic effect of the invasive Fabaceae, Ulex europaeus and Teline monspessulana, on the production of phenolic compounds in C. alba seedlings was investigated. It was expected that the oxidative stress caused by the allelochemicals released by both invaders would induce a differential response in the production of phenolic compounds in C. alba seedlings. These antioxidant mechanisms guaranteed C. alba plants' survival, even to the detriment of their initial growth. Cryptocarya alba seedlings were irrigated with T. monspessulana (TE) and U. europaeus (UE) extracts and water as a control. After eight months, morphometric variables were evaluated, and leaves were collected for histochemical analysis. The methanol extracts from treatments and control leaves were used for anthocyanin, phenol, and antioxidant activity quantifications. Both invasive species induced an inhibitory effect on the morphometric variables. Teline monspessulana induced leaf damage and increased the anthocyanin content by 4.9-fold, but did not affect the phenol content. Ulex europaeus induces root damage and a decrease in phenol content, but does not affect the anthocyanin content. Both Fabaceae extracts affected the profile and polyphenol concentration and consequently decreased the antioxidant capacity of C. alba leaves at low extract concentrations. Phenols, lignin, and ROS accumulate on C. alba leaves, but the histochemical reactions were less intense under UE. Although C. alba develops different antioxidant protection mechanisms against stress induced by UE and TE, its survival is guaranteed, even to the detriment of its initial growth.
Collapse
Affiliation(s)
- Lorena Rodríguez-Cerda
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (L.R.-C.); (L.M.G.); (E.G.)
| | - Lubia M. Guedes
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (L.R.-C.); (L.M.G.); (E.G.)
| | - Solange Torres
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
| | - Elvis Gavilán
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (L.R.-C.); (L.M.G.); (E.G.)
| | - Narciso Aguilera
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (L.R.-C.); (L.M.G.); (E.G.)
| |
Collapse
|
5
|
Mao H, Zhao W, Yang X, Sheng L, Zhu S. Recruitment and metabolomics between Canna indica and rhizosphere bacteria under Cr stress. Front Microbiol 2023; 14:1187982. [PMID: 37655347 PMCID: PMC10465350 DOI: 10.3389/fmicb.2023.1187982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
It is of positive significance to explore the mechanism of antioxidant and metabolic response of Canna indica under Cr stress mediated by rhizosphere niche. However, the mechanisms of recruitment and interaction of rhizosphere microorganisms in plants still need to be fully understood. This study combined physiology, microbiology, and metabolomics, revealing the interaction between C. indica and rhizosphere microorganisms under Cr stress. The results showed that Cr stress increased the content of malondialdehyde (MDA) and oxygen-free radicals (ROS) in plants. At the same time, the activities of antioxidant enzymes (SOD, POD, and APX) and the contents of glutathione (GSH) and soluble sugar were increased. In addition, Cr stress decreased the α diversity index of C. indica rhizosphere bacterial community and changed its community structure. The dominant bacteria, namely, Actinobacteriota, Proteobacteria, and Chloroflexi accounted for 75.16% of the total sequence. At the same time, with the extension of stress time, the colonization amount of rhizosphere-dominant bacteria increased significantly, and the metabolites secreted by roots were associated with the formation characteristics of Proteobacteria, Actinobacteria, Bacteroidetes, and other specific bacteria. Five critical metabolic pathways were identified by metabolome analysis, involving 79 differentially expressed metabolites, which were divided into 15 categories, mainly including lipids, terpenoids, and flavonoids. In conclusion, this study revealed the recruitment and interaction response mechanism between C. indica and rhizosphere bacteria under Cr stress through multi-omics methods, providing the theoretical basis for the remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | - Sixi Zhu
- The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
6
|
Zhang Y, Liu R, Zhou Y, Wang S, Zhang B, Kong J, Zheng S, Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1005-1016. [PMID: 34167638 DOI: 10.1071/fp21156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Oridonin is an important diterpenoid, which plays an important role in plant growth and development. PLDα1 and GPA1 are involved in many biotic or abiotic stresses. In this study, using the seedlings of Arabidopsis thaliana L. wild type (WT), PLDα1 defective mutant (pldα1), GPA1 defective mutant (gpa1) and pldα1/gpa1 double mutant as materials, the effect of stomatal apertures responding to Oridonin and the functions of PLDα1 and GPA1 in this response were investigated. The results showed that 60 μmol·L-1 of Oridonin induced stomatal closure and significantly increased the relative expression levels of GPA1 and PLDα1. Oridonin increased H2O2 accumulation in guard cells by inhibiting the antioxidant enzymes. The increase of H2O2 caused the expression of OST1, which is a positive regulatory gene for stomatal closure. Both PLDα1 and GPA1 were involved in Oridonin-induced stomatal closure and PLDα1 acted downstream of GPA1. The results suggested that Oridonin caused stomatal closure by affecting GPA1 and promoting PLDα1 to produce PA, and further accumulating H2O2 to upregulate gene OST1.
Collapse
Affiliation(s)
- Yue Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruirui Liu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaping Zhou
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Simin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Bianfeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Juantao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, People's Republic of China; and Corresponding author.
| |
Collapse
|
7
|
Yang YH, Wang CJ, Li RF, Zhang ZY, Yang H, Chu CY, Li JT. Overexpression of RgPAL family genes involved in phenolic biosynthesis promotes the replanting disease development in Rehmannia glutinosa. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153339. [PMID: 33383401 DOI: 10.1016/j.jplph.2020.153339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Rehmannia glutinosa production is affected by the replanting disease, which involves autotoxic harm mediated by specific endogenous allelochemicals in root exudates. Many phenolics that act as allelochemical agents are mostly phenylpropanoid products of secondary metabolism in plants. Phenylalanine ammonia-lyase (PAL) is the first enzyme that catalyses the deamination of l-phenylalanine for entrance into the phenylpropanoid pathway. PAL family genes have been isolated and functionally characterized in many plant species. However, PAL family genes involved in phenolic biosynthesis remain largely uncharacterized in R. glutinosa. Here, we identified and characterized four PAL family genes (RgPAL2 to RgPAL5) in the species whose sequences exhibited highly conserved domains of PALs according to in silico analysis, implying their potential function in phenolic biosynthesis. Overexpression of RgPALs in R. glutinosa enhanced phenolic production, verifying that RgPAL family genes participate in phenolic biosynthesis pathways. Moreover, we found that the release of several allelopathic phenolics from the roots of RgPAL-overexpressing transgenic R. glutinosa increased, implying that the RgPALs positively promote their release. Importantly, under continuous monoculture stress, we found that the RgPAL transgenic plants exhibited more significant autotoxic harm than did non-transgenic (WT) plants by activating the phenolics/phenylpropanoid pathway, indicating that RgPAL family genes function as positive regulators of the replanting disease development in R. glutinosa. This study revealed that RgPAL family genes are involved in the biosynthesis and release of several phenolics and positively control the replanting disease development in R. glutinosa, laying a foundation for further clarification of the molecular mechanisms underlying the disease formation.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Zhong Yi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China.
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chen Yang Chu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Jia Tian Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| |
Collapse
|
8
|
Shen W, Zeng C, Zhang H, Zhu K, He H, Zhu W, He H, Li G, Liu J. Integrative Physiological, Transcriptional, and Metabolic Analyses Provide Insights Into Response Mechanisms of Prunus persica to Autotoxicity Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:794881. [PMID: 34975982 PMCID: PMC8714634 DOI: 10.3389/fpls.2021.794881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 05/10/2023]
Abstract
Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.
Collapse
Affiliation(s)
- Wanqi Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chunfa Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - He Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hao He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Wei Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hanzi He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Guohuai Li, , orcid.org/0000-0003-1170-9157
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junwei Liu, , orcid.org/0000-0002-8842-2253
| |
Collapse
|
9
|
Garlic Substrate Induces Cucumber Growth Development and Decreases Fusarium Wilt through Regulation of Soil Microbial Community Structure and Diversity in Replanted Disturbed Soil. Int J Mol Sci 2020; 21:ijms21176008. [PMID: 32825476 PMCID: PMC7504009 DOI: 10.3390/ijms21176008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Garlic substrate could influence plant growth through affecting soil microbiome structure. The relationship mechanism between changes in soil microbial communities, disease suppression and plant development, however, remains unclear, particularly in the degraded soil micro-ecological environment. In this study, garlic substrates as a soil amendment were incorporated with different ratios (1:100, 3:100 and 5:100 g/100 g of soil) in a replanted disturbed soil of long-term cucumber monoculture (annual double cropping system in a greenhouse). The results indicated that higher amount of C-amended garlic substrate significantly induced soil suppressiveness (35.9% greater than control (CK) against the foliar disease incidence rate. This inhibitory effect consequently improved the cucumber growth performance and fruit yield to 20% higher than the non-amended soil. Short-term garlic substrate addition modified the soil quality through an increase in soil organic matter (SOM), nutrient availability and enzymatic activities. Illumina MiSeq sequencing analysis revealed that soil bacterial and fungal communities in the garlic amendment were significantly different from the control. Species richness and diversity indices significantly increased under treated soil. The correlation-based heat map analysis suggested that soil OM, nutrient contents and biological activators were the primary drivers reshaping the microbial community structure. Furthermore, garlic substrate inhibited soil-borne pathogen taxa (Fusarium and Nematoda), and their reduced abundances, significantly affecting the crop yield. In addition, the host plant recruited certain plant-beneficial microbes due to substrate addition that could directly contribute to plant–pathogen inhibition and crop biomass production. For example, abundant Acidobacteria, Ascomycota and Glomeromycota taxa were significantly associated with cucumber yield promotion. Firmicutes, Actinobacteria, Bacteroidetes, Basidiomycota and Glomeromycota were the associated microbial taxa that possibly performed as antagonists of Fusarium wilt, with plant pathogen suppression potential in monocropped cucumber-planted soil.
Collapse
|
10
|
Ming Y, Hu GX, Li J, Zhu ZJ, Fan XM, Yuan DY. Allelopathic Effects of Castanea henryi Aqueous Extracts on the Growth and Physiology of Brassica pekinensis and Zea mays. Chem Biodivers 2020; 17:e2000135. [PMID: 32249503 DOI: 10.1002/cbdv.202000135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 02/03/2023]
Abstract
The present study investigated the allelopathic effects of aqueous extracts of Castanea henryi litter on the growth and physiological responses of Brassica pekinensis and Zea mays. Treatment with high concentrations of leaf extract (0.05 g/ml for B. pekinensis and 0.10 g/ml for Z. mays) significantly increased malonaldehyde content and reduced seed germination, seedling growth, chlorophyll content, and the activity levels of antioxidant enzymes. These effects generally increased with increasing extract concentration. However, in Z. mays, low extract concentrations actually promoted seed germination, shoot growth, chlorophyll content, and antioxidant enzyme activity. The allelopathic effects of the various C. henryi extracts decreased as follows: leaf extract > twig extract > shell extract. Eleven potential allelochemicals including rutin, quercetin, luteolin, procyanidin A2, kaempferol, allantoin, propionic acid, salicylic acid, jasmonic acid, methylmalonic acid, and gentisic acid were identified in the leaves of C. henryi which were linked to the strongest allelopathic effects. These findings suggest that the allelopathic effects of C. henryi differ depending on receptor plant species, and that leaves are the most allelopathic litter in C. henryi.
Collapse
Affiliation(s)
- Yue Ming
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Guan-Xing Hu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Jing Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Zhou-Jun Zhu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Xiao-Ming Fan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - De-Yi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, P. R. China.,Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| |
Collapse
|
11
|
Yang Y, Zhang Z, Li R, Yi Y, Yang H, Wang C, Wang Z, Liu Y. RgC3H Involves in the Biosynthesis of Allelopathic Phenolic Acids and Alters Their Release Amount in Rehmannia glutinosa Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E567. [PMID: 32365552 PMCID: PMC7284580 DOI: 10.3390/plants9050567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Rehmannia glutinosa production is affected by replanting disease, in which autotoxic harm to plants is mediated by endogenous phenolic acids as allelopathic compounds found in root exudates. These phenolic acids are mostly phenylpropanoid products of plants' secondary metabolisms. The molecular mechanism of their biosynthesis and release has not been explored in R. glutinosa. P-coumarate-3-hydroxylase (C3H) is the second hydroxylase gene involved in the phenolic acid/phenylpropanoid biosynthesis pathways. C3Hs have been functionally characterized in several plants. However, limited information is available on the C3H gene in R. glutinosa. Here, we identified a putative RgC3H gene and predicted its potential function by in silico analysis and subcellular localization. Overexpression or repression of RgC3H in the transgenic R. glutinosa roots indicated that the gene was involved in allelopathic phenolic biosynthesis. Moreover, we found that these phenolic acid release amount of the transgenic R. glutinosa roots were altered, implying that RgC3H positively promotes their release via the molecular networks of the activated phenolic acid/phenylpropanoid pathways. This study revealed that RgC3H plays roles in the biosynthesis and release of allelopathic phenolic acids in R. glutinosa roots, laying a basis for further clarifying the molecular mechanism of the replanting disease development.
Collapse
Affiliation(s)
- Yanhui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China;
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yanjie Yi
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Chaojie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zushiqi Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yunyi Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| |
Collapse
|