1
|
Lahbouki S, Hashem A, Kumar A, Abd_Allah EF, Meddich A. Integration of Horse Manure Vermicompost Doses and Arbuscular Mycorrhizal Fungi to Improve Fruit Quality, and Soil Fertility in Tomato Field Facing Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1449. [PMID: 38891258 PMCID: PMC11174961 DOI: 10.3390/plants13111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha-1 and C2 10 t ha-1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.
Collapse
Affiliation(s)
- Soufiane Lahbouki
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India;
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdelilah Meddich
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| |
Collapse
|
2
|
Yao X, Mu Y, Zhang L, Chen L, Zou S, Chen X, Lu K, Dong H. AtPIP1;4 and AtPIP2;4 Cooperatively Mediate H 2O 2 Transport to Regulate Plant Growth and Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1018. [PMID: 38611547 PMCID: PMC11013698 DOI: 10.3390/plants13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
The rapid production of hydrogen peroxide (H2O2) is a hallmark of plants' successful recognition of pathogen infection and plays a crucial role in innate immune signaling. Aquaporins (AQPs) are membrane channels that facilitate the transport of small molecular compounds across cell membranes. In plants, AQPs from the plasma membrane intrinsic protein (PIP) family are utilized for the transport of H2O2, thereby regulating various biological processes. Plants contain two PIP families, PIP1s and PIP2s. However, the specific functions and relationships between these subfamilies in plant growth and immunity remain largely unknown. In this study, we explore the synergistic role of AtPIP1;4 and AtPIP2;4 in regulating plant growth and disease resistance in Arabidopsis. We found that in plant cells treated with H2O2, AtPIP1;4 and AtPIP2;4 act as facilitators of H2O2 across membranes and the translocation of externally applied H2O2 from the apoplast to the cytoplasm. Moreover, AtPIP1;4 and AtPIP2;4 collaborate to transport bacterial pathogens and flg22-induced apoplastic H2O2 into the cytoplasm, leading to increased callose deposition and enhanced defense gene expression to strengthen immunity. These findings suggest that AtPIP1;4 and AtPIP2;4 cooperatively mediate H2O2 transport to regulate plant growth and immunity.
Collapse
Affiliation(s)
- Xiaohui Yao
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yanjie Mu
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
- Qingdao King Agroot Crop Science, Qingdao 266071, China
| | - Liyuan Zhang
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lei Chen
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Shenshen Zou
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Kai Lu
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Hansong Dong
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
3
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
4
|
Huang Y, Wang C, Ma Z, Zhang L, Wu F. Effects of Funneliformis mosseae on Growth and Photosynthetic Characteristics of Camellia oleifera under Different Nitrogen Forms. PLANTS (BASEL, SWITZERLAND) 2024; 13:370. [PMID: 38337904 PMCID: PMC10857364 DOI: 10.3390/plants13030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen fertilizer increases agricultural yields but increases economic costs and causes a series of environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to be used as biological fertilizer. However, the influence of nitrogen form on plant growth responsiveness to AMF inoculation is poorly understood. In this study, we investigated the effects of Funneliformis mosseae on growth, root morphology and photosynthetic characteristics of Camellia oleifera under different nitrogen forms during three harvest periods and clarified the most suitable nitrogen form for C. oleifera-AMF symbiosis. The results showed that urea, ammonium and nitrate nitrogen promoted plant growth and photosynthetic capacity, among which urea treatment had the highest value in all three harvests. No significant difference in plant growth parameters was observed between ammonium and nitrate nitrogen treatments in the first two harvests, while the plant height was significantly lower under ammonium nitrogen treatment than nitrate nitrogen treatment in the third harvest. Inoculation with F. mosseae in the presence of indigenous AMF could promote AMF colonization and plant growth at all three harvest times. Inoculation with F. mosseae significantly increased gas exchange parameters, the maximum photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPSII). Inoculation with AMF increased the photochemical quenching coefficient (qP) better under urea treatment and improved the non-photochemical quenching coefficient (qN) better under ammonium nitrogen treatment. Principal component analysis showed that urea is the most beneficial nitrogen fertilizer for C. oleifera-AMF symbiosis. The results of this study provide a theoretical basis for the combination use of AMF and nitrogen fertilizer in agroforestry.
Collapse
Affiliation(s)
- Yuxuan Huang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuangxin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Ziran Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Linping Zhang
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fei Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
5
|
Gong M, Bai N, Wang P, Su J, Chang Q, Zhang Q. Co-Inoculation with Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes under Drought Stress: Synergistic or Competitive Effects on Maize Growth, Photosynthesis, Root Hydraulic Properties and Aquaporins? PLANTS (BASEL, SWITZERLAND) 2023; 12:2596. [PMID: 37514211 PMCID: PMC10383269 DOI: 10.3390/plants12142596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSE) were simultaneously colonized in the root cells of maize. Single AMF and DSE symbiosis have been proven to improve the drought tolerance of maize. However, the effects of both fungi coexisting in maize roots under drought stress are not yet known. In this study, pot experiments of maize seedlings were conducted through four inoculation treatments (single AMF inoculation of Rhizophagus irregularis, single DSE inoculation of Exophiala pisciphila, co-inoculation of AMF + DSE and non-mycorrhizal inoculation) under well-watered (WW) and drought-stressed (DS) conditions. AMF and DSE colonization status, maize physiology and aquaporin gene expression in maize roots were investigated. The objective of this paper was to evaluate whether AMF and DSE had competitive, independent or synergistic effects on regulating the drought tolerance of maize. When maize seedlings of three inoculation treatments were subjected to drought stress, single AMF inoculation had the highest shoot and root dry weight, plant height, root length, osmotic root hydraulic conductivity and hydrostatic root hydraulic conductivity in maize seedlings. However, co-inoculation of AMF + DSE induced the highest stomatal conductance in maize leaves and the lowest H2O2 and O2•- concentration, membrane electrolyte leakage, intercellular CO2 concentration and gene expression level of ZmPIP1;1, ZmPIP1;2, ZmPIP2;1, ZmPIP2;5 and ZmPIP2;6. In addition, co-inoculation of AMF + DSE also obviously down-regulated the GintAQPF1 and GintAQPF2 expression in R. irregularis compared with single AMF inoculation treatment. Under DS stress, there were competitive relationships between AMF and DSE with regard to regulating mycorrhizal colonization, maize growth, root hydraulic conductivity and the gene expression of aquaporins in R. irregularis, but there were synergistic relationships with regard to regulating membrane electrolyte leakage, oxidative damage, photosynthesis and the aquaporin gene expression of maize seedlings. The obtained results improve our knowledge about how the mechanisms of AMF and DSE coexist, promoting the drought tolerance of host plants.
Collapse
Affiliation(s)
- Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Pengfei Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiajie Su
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Qiaoming Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Wang S, Ren Y, Han L, Nie Y, Zhang S, Xie X, Hu W, Chen H, Tang M. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Eucalyptus grandis Tolerance to Drought Stress. Microbiol Spectr 2023; 11:e0438122. [PMID: 36927000 PMCID: PMC10100883 DOI: 10.1128/spectrum.04381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Drought stress has a negative impact on plant growth and production. Arbuscular mycorrhizal (AM) fungi, which establish symbioses with most terrestrial vascular plant species, play important roles in improving host plant mineral nutrient acquisition and resistance to drought. However, the physiological and molecular regulation mechanisms occurring in mycorrhizal Eucalyptus grandis coping with drought stress remain unclear. Here, we studied the physiological changes and mitogen-activated protein kinase (MAPK) cascade gene expression profiles of E. grandis associated with AM fungi under drought stress. The results showed that colonization by AM fungi significantly enhanced plant growth, with higher plant biomass, shoot height, root length, and relative water content (RWC) under drought conditions. Mycorrhizal plants had lower levels of accumulation of proline, malondialdehyde (MDA), H2O2, and O2·- than seedlings not colonized with AM fungi. In addition, mycorrhizal E. grandis also had higher peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities under drought conditions, improving the antioxidant system response. Eighteen MAPK cascade genes were isolated from E. grandis, and the expression levels of the MAPK cascade genes were positively induced by symbiosis with AM fungi, which was correlated with changes in the proline, MDA, H2O2, and O2·- contents and POD, SOD, and CAT activities. In summary, our results showed that AM symbiosis enhances E. grandis drought tolerance by regulating plant antioxidation abilities and MAPK cascade gene expression. IMPORTANCE Arbuscular mycorrhizal (AM) fungi play an important role in improving plant growth and development under drought stress. The MAPK cascade may regulate many physiological and biochemical processes in plants in response to drought stress. Previous studies have shown that there is a complex regulatory network between the plant MAPK cascade and drought stress. However, the relationship between the E. grandis MAPK cascade and AM symbiosis in coping with drought remains to be investigated. Our results suggest that AM fungi could improve plant drought tolerance mainly by improving the antioxidant ability to protect plants from reactive oxygen species (ROS) and alleviate oxidative stress damage. The expression of the MAPK cascade genes was induced in mycorrhizal E. grandis seedlings under drought stress. This study revealed that MAPK cascade regulation is of special significance for improving the drought tolerance of E. grandis. This study provides a reference for improving mycorrhizal seedling cultivation under stress.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhang LD, Song LY, Dai MJ, Guo ZJ, Wei MY, Li J, Xu CQ, Zhu XY, Zheng HL. Cadmium promotes the absorption of ammonium in hyperaccumulator Solanum nigrum L. mediated by ammonium transporters and aquaporins. CHEMOSPHERE 2022; 307:136031. [PMID: 35981624 DOI: 10.1016/j.chemosphere.2022.136031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 μM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 μM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 μM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 μM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 μM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ming-Jin Dai
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
8
|
Ruiz-Lozano JM, Quiroga G, Erice G, Pérez-Tienda J, Zamarreño ÁM, García-Mina JM, Aroca R. Using the Maize Nested Association Mapping (NAM) Population to Partition Arbuscular Mycorrhizal Effects on Drought Stress Tolerance into Hormonal and Hydraulic Components. Int J Mol Sci 2022; 23:ijms23179822. [PMID: 36077217 PMCID: PMC9456450 DOI: 10.3390/ijms23179822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a first experiment was conducted with the objective of determining how drought stress alters the radial water flow and physiology in the whole maize nested association mapping (NAM) population and to find out which contrasting maize lines should be tested in a second experiment for their responses to drought in combination with an arbuscular mycorrhizal (AM) fungus. Emphasis was placed on determining the role of plant aquaporins and phytohormones in the responses of these contrasting maize lines to cope with drought stress. Results showed that both plant aquaporins and hormones are altered by the AM symbiosis and are highly involved in the physiological responses of maize plants to drought stress. The regulation by the AM symbiosis of aquaporins involved in water transport across cell membranes alters radial water transport in host plants. Hormones such as IAA, SA, ABA and jasmonates must be involved in this process either by regulating the own plant-AM fungus interaction and the activity of aquaporins, or by inducing posttranscriptional changes in these aquaporins, which in turns alter their water transport capacity. An intricate relationship between root hydraulic conductivity, aquaporins and phytohormones has been observed, revealing a complex network controlling water transport in maize roots.
Collapse
Affiliation(s)
- Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Correspondence:
| | - Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
- ATENS—Agrotecnologías Naturales S.L., Ctra.T-214, s/n, Km 4, La Riera de Gaia, 43762 Tarragona, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - José María García-Mina
- Departmento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Irunlarrea No 1, 31008 Pamplona, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda Nº 1, 18008 Granada, Spain
| |
Collapse
|
9
|
Chandrasekaran M. Arbuscular Mycorrhizal Fungi Mediated Enhanced Biomass, Root Morphological Traits and Nutrient Uptake under Drought Stress: A Meta-Analysis. J Fungi (Basel) 2022; 8:jof8070660. [PMID: 35887417 PMCID: PMC9323047 DOI: 10.3390/jof8070660] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Drought stress remains the major constraint in affecting crop productivity in several arid and semi-arid areas highlighting climate change perspectives. Arbuscular mycorrhizal fungi (AMF) belong to a versatile class of plant−fungal symbiotic associations establishing drought stress alleviation. Nevertheless, the mechanistic mode of sustainable agriculture necessitates rigorous assessment for authentic and reproducible plant growth parameters. Understanding the plant growth promotion, root morphological changes, and nutrient uptake response in AMF-inoculated plants to drought is very important for sustainable agriculture. Therefore, conducted a meta-analysis of published research articles for determining the efficacy of AMF in alleviating drought stress. Overall analysis showed that AM inoculated plants had 49% higher plant growth promotion than the non-mycorrhizal plants under drought stress. Biomass analysis depicted the root dry weight increase by 49%, shoot dry weight increase by 54%, and total dry weight increase by 58% indicating plant biomass traits augmentation. Root morphological traits analysis corresponded to increased root length (37%), root surface (31%), and root volume (65%). Notably, nutrient uptake assessment showed variable increases in uptake patterns such as P uptake by 86%, N uptake by 35%, and K uptake by 46%. Furthermore, the prominent efficacy of AMF was significantly larger under drought for P uptake (p < 0.001) and root volume (p < 0.001) indicating the linear relationship between root length and P uptake. Thus, the present meta-analysis confirms that drought stress alleviation emancipated by AMF is mediated by root traits modification and phosphorous acquisition efficacy. Hence, meta-analyses along with experimental validations with field trial evaluations will certainly provide the AMF research for escalated applications for better plant productivity, stress alleviation, and sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209-Neundong-ro, Gwangjin-gu, Seoul 05006, Korea
| |
Collapse
|
10
|
Cheng S, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS. Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi. Front Microbiol 2021; 12:809473. [PMID: 35003041 PMCID: PMC8733408 DOI: 10.3389/fmicb.2021.809473] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
Collapse
Affiliation(s)
- Shen Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
11
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Li G, Chen T, Zhang Z, Li B, Tian S. Roles of Aquaporins in Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1134. [PMID: 32882951 PMCID: PMC7569825 DOI: 10.3390/plants9091134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.
Collapse
Affiliation(s)
- Guangjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Balestrini R, Brunetti C, Chitarra W, Nerva L. Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi? PLANTS (BASEL, SWITZERLAND) 2020; 9:E1105. [PMID: 32867243 PMCID: PMC7570035 DOI: 10.3390/plants9091105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this reason, they receive expanding attention for the potential use in sustainable and climate-smart agriculture context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity and extreme temperature, the involved mechanisms are still to be fully discovered. In this review, some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed, with a specific focus on nitrogen acquisition-mediated by AM fungi.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
| | - Cecilia Brunetti
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
| | - Walter Chitarra
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
- Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, (CREA-VE), 31015 Conegliano (TV), Italy
| | - Luca Nerva
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), 10125 Turin, Italy; (C.B.); (W.C.); (L.N.)
- Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, (CREA-VE), 31015 Conegliano (TV), Italy
| |
Collapse
|
14
|
Huey CJ, Gopinath SCB, Uda MNA, Zulhaimi HI, Jaafar MN, Kasim FH, Yaakub ARW. Mycorrhiza: a natural resource assists plant growth under varied soil conditions. 3 Biotech 2020; 10:204. [PMID: 32337150 PMCID: PMC7165205 DOI: 10.1007/s13205-020-02188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 10/24/2022] Open
Abstract
In this overview, the authors have discussed the potential advantages of the association between mycorrhizae and plants, their mutual accelerated growth under favorable conditions and their role in nutrient supply. In addition, methods for isolating mycorrhizae are described and spore morphologies and their adaptation to various conditions are outlined. Further, the significant participation of controlled greenhouses and other supported physiological environments in propagating mycorrhizae is detailed. The reviewed information supports the lack of host- and niche-specificity by arbuscular mycorrhizae, indicating that these fungi are suitable for use in a wide range of ecological conditions and with propagules for direct reintroduction. Regarding their prospective uses, the extensive growth of endomycorrhizal fungi suggests it is suited for poor-quality and low-fertility soils.
Collapse
Affiliation(s)
- Chew Jia Huey
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - M. N. A. Uda
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Hanna Ilyani Zulhaimi
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Mahmad Nor Jaafar
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Farizul Hafiz Kasim
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Centre of Excellence for Biomass Utilization, School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Ahmad Radi Wan Yaakub
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| |
Collapse
|