1
|
Plestenjak E, Neji M, Sinkovič L, Meglič V, Pipan B. Genomic insights into genetic diversity and seed coat color change in common bean composite populations. FRONTIERS IN PLANT SCIENCE 2025; 15:1523745. [PMID: 39925373 PMCID: PMC11802580 DOI: 10.3389/fpls.2024.1523745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025]
Abstract
Introduction The color of the seed coat of common bean (Phaseolus vulgaris L.) is an important trait influencing marketability and consumer preferences. An understanding of the genetic mechanisms underlying seed coat color variation can aid in breeding programs aimed at improving esthetic and agronomic traits. This study investigates the genetic diversity and molecular mechanisms associated with seed coat color change in composite bean populations through phenotypic analysis and whole genome sequencing (WGS). Methods Four composite populations and two standard varieties of common bean were cultivated over a two-year period and seed coat color and morphological traits were assessed. WGS was performed on 19 phenotypes and yielded 427 GB of data with an average sequencing depth of 30×. More than 8.6 million high-confidence single nucleotide polymorphisms (SNPs) were identified. Genetic diversity metrics such as nucleotide diversity (π), observed heterozygosity (Ho), expected heterozygosity (He) and allelic richness (Ar) were calculated. Population structure was analyzed using Fst, principal component analysis (PCA) and clustering. Cross-population statistics (XP-CLR and XP-EHH) were used to identify selection signals associated with seed coat color change. Gene Ontology (GO) and KEGG enrichment analyzes were performed for candidate genomic regions. Results Phenotypic analysis revealed significant differences in seed coat color among the four composite populations, with notable changes among years. The populations exhibited different growth habits and plant types, especially KIS_Amand and SRGB_00366, which showed the highest phenotypic diversity in seed coat color. WGS identified 8.6 million SNPs, with chromosomes 4 and 1 having the highest SNP density (11% each), while chromosomes 3 and 6 had the lowest. KIS_Amand had the highest genetic diversity (π = 0.222, Ar = 1.380) and SRGB_00189 the lowest (π = 0.067, Ar = 1.327). SRGB_00366 showed moderate genetic diversity (π = 0.173, Ar = 1.338) and INCBN_03048 showed medium diversity (π = 0.124, Ar = 1.047). The Fst values indicated a strong genetic differentiation, especially between the two standard varieties ETNA and Golden_Gate (Fst = 0.704) and the composite populations. Selective sweep analysis with XP-CLR and XP-EHH identified 118 significant regions associated with seed coat color change, with most regions located on chromosomes 4, 9, 10 and 11. Phosphatidylinositol signaling pathways were highly enriched in candidate regions, indicating that cellular transport mechanisms play a critical role in seed coat pigmentation. Key GO terms included phosphatidylinositol-biphosphate binding, exocytosis, and vesicle-mediated transport, suggesting a link between cellular transport and pigment deposition in the seed coat. Discussion The study demonstrates significant genetic diversity within and among common bean composite populations, with KIS_Amand and SRGB_00366 exhibiting the highest phenotypic and genetic variability. The identification of selective sweeps and the enrichment of phosphatidylinositol-related pathways provide new insights into the molecular mechanisms controlling seed coat color variation. The strong genetic differentiation between standard varieties and composite populations highlights the role of selective breeding in shaping the genetic landscape of common bean. The results suggest that variation in seed coat color is controlled by both regulatory and structural genetic changes, providing valuable information for breeding programs. Conclusion This study provides a detailed analysis of the genetic architecture of seed coat color variation in common bean. The identification of key genomic regions and pathways associated with seed pigmentation improves our understanding of the complex genetic interactions underlying this trait. These results provide valuable genomic resources for future breeding efforts aimed at improving seed color and other important traits in common bean.
Collapse
Affiliation(s)
- Eva Plestenjak
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mohamed Neji
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
2
|
da Silva AV, Garcia CB, de Carvalho IAS, do Nascimento WF, Ramos SLF, Rodrigues DP, Zucchi MI, Costa FM, Alves-Pereira A, Batista CE, da Silva EF, Veasey EA. High genetic structure of Spondias mombin in Brazil revealed with SNP markers. Genet Mol Biol 2024; 47:e20240030. [PMID: 39656813 PMCID: PMC11719815 DOI: 10.1590/1678-4685-gmb-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/15/2024] [Indexed: 12/17/2024] Open
Abstract
Spondias mombin L. (Anacardiaceae) is an arboreal and allogamous fruit tree native from southern Mexico to southeastern Brazil, with great potential for economic exploitation. This study aimed to evaluate the structure and genomic diversity of yellow mombin accessions collected in nine locations in Brazil using Single Nucleotide Polymorphisms (SNP) markers. Significant genetic structure was observed in the discriminant analysis of principal components (DAPC) and dendrogram construction, in accordance with our hypotheses. The Mantel test identified a highly positive and significant correlation between geographic and genetic distances. The locations from the Amazon biome presented higher genetic diversity values when compared to those from the Atlantic Forest and Cerrado, which is expected considering the higher vulnerability of these biomes. However, although presenting greater genetic diversity, the Amazon biome showed positive inbreeding coefficients (F IS ) in three of the four locations, ranging from 0.0855 to 0.2421, indicating a potential risk of genetic erosion, possibly related to the increased degradation of this biome in recent decades. The results obtained contribute to the understanding of the distribution of genetic variation and conservation status of yellow mombin in Brazil. They could also be used as a subsidy for developing conservation strategies and the genetic improvement of this species.
Collapse
Affiliation(s)
- Allison Vieira da Silva
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| | - Caroline Bertocco Garcia
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| | - Igor Araújo Santos de Carvalho
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| | | | | | | | | | - Flaviane Malaquias Costa
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| | | | - Carlos Eduardo Batista
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| | | | - Elizabeth Ann Veasey
- Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Cortinovis G, Vincenzi L, Anderson R, Marturano G, Marsh JI, Bayer PE, Rocchetti L, Frascarelli G, Lanzavecchia G, Pieri A, Benazzo A, Bellucci E, Di Vittori V, Nanni L, Ferreira Fernández JJ, Rossato M, Aguilar OM, Morrell PL, Rodriguez M, Gioia T, Neumann K, Alvarez Diaz JC, Gratias A, Klopp C, Bitocchi E, Geffroy V, Delledonne M, Edwards D, Papa R. Adaptive gene loss in the common bean pan-genome during range expansion and domestication. Nat Commun 2024; 15:6698. [PMID: 39107305 PMCID: PMC11303546 DOI: 10.1038/s41467-024-51032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal evolutionary model to study adaptive diversity in wild and domesticated populations. Here, we present a common bean pan-genome based on five high-quality genomes and whole-genome reads representing 339 genotypes. It reveals ~234 Mb of additional sequences containing 6,905 protein-coding genes missing from the reference, constituting 49% of all presence/absence variants (PAVs). More non-synonymous mutations are found in PAVs than core genes, probably reflecting the lower effective population size of PAVs and fitness advantages due to the purging effect of gene loss. Our results suggest pan-genome shrinkage occurred during wild range expansion. Selection signatures provide evidence that partial or complete gene loss was a key adaptive genetic change in common bean populations with major implications for plant adaptation. The pan-genome is a valuable resource for food legume research and breeding for climate change mitigation and sustainable agriculture.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Leonardo Vincenzi
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Robyn Anderson
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Jacob Ian Marsh
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp Emanuel Bayer
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Lorenzo Rocchetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Lanzavecchia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Alice Pieri
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100, Ferrara, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | | | - Marzia Rossato
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
- Genartis s.r.l, 37126, Verona, Italy
| | - Orlando Mario Aguilar
- Institute of Biotechnology and Molecular Biology, UNLP-CONICET, CCT La Plata, La Plata, Argentina
| | - Peter Laurent Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- CBV-Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, 07041, Alghero, Italy
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Juan Camilo Alvarez Diaz
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France
| | - Ariane Gratias
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinformatics Platform, Applied Mathematics and Informatics of Toulouse, Sigenae, MIAT, UR875, Castanet Tolosan, France
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valérie Geffroy
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), University of Evry, University Paris-Saclay, 91405, Orsay, France.
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, 37134, Verona, Italy.
- Genartis s.r.l, 37126, Verona, Italy.
| | - David Edwards
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
| |
Collapse
|
4
|
Plestenjak E, Meglič V, Sinkovič L, Pipan B. Factors Influencing the Emergence of Heterogeneous Populations of Common Bean ( Phaseolus vulgaris L.) and Their Potential for Intercropping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1112. [PMID: 38674521 PMCID: PMC11055032 DOI: 10.3390/plants13081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
The common bean is an important legume valued for its protein-rich seeds and its ability to fix nitrogen, making it a key element of crop rotation. In conventional agriculture, the emphasis is on uniformity and genetic purity to optimize crop performance and maximize yields. This is due to both the legal obligations to register varieties and the challenges of implementing breeding programs to create genetically diverse varieties. This paper focuses on the factors that influence the occurrence of heterogeneous common bean populations. The main factors contributing to this diversity have been described, including local adaptations, variable weather conditions, different pollinator species, and intricate interactions between genes controlling seed coat colour. We also discuss the benefits of intercropping common beans for organic farming systems, highlighting the improvement in resistance to diseases, and adverse environmental conditions. This paper contributes to a better understanding of common bean seed heterogeneity and the legal obligation to use heterogeneous populations.
Collapse
Affiliation(s)
- Eva Plestenjak
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1001 Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| | - Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| | - Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia; (V.M.); (L.S.); (B.P.)
| |
Collapse
|
5
|
Taboada G, Abán CL, Mercado Cárdenas G, Spedaletti Y, Aparicio González M, Maita E, Ortega-Baes P, Galván M. Characterization of fungal pathogens and germplasm screening for disease resistance in the main production area of the common bean in Argentina. FRONTIERS IN PLANT SCIENCE 2022; 13:986247. [PMID: 36161011 PMCID: PMC9490223 DOI: 10.3389/fpls.2022.986247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.
Collapse
Affiliation(s)
- Gisel Taboada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Carla L. Abán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | | | - Yamila Spedaletti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Mónica Aparicio González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| | - Efrain Maita
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Pablo Ortega-Baes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Marta Galván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) CCT-Salta, Salta, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Salta, Salta, Argentina
| |
Collapse
|
6
|
Cortés AJ, López-Hernández F, Blair MW. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives. Front Genet 2022; 13:910386. [PMID: 35991553 PMCID: PMC9389289 DOI: 10.3389/fgene.2022.910386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Leveraging innovative tools to speed up prebreeding and discovery of genotypic sources of adaptation from landraces, crop wild relatives, and orphan crops is a key prerequisite to accelerate genetic gain of abiotic stress tolerance in annual crops such as legumes and cereals, many of which are still orphan species despite advances in major row crops. Here, we review a novel, interdisciplinary approach to combine ecological climate data with evolutionary genomics under the paradigm of a new field of study: genome-environment associations (GEAs). We first exemplify how GEA utilizes in situ georeferencing from genotypically characterized, gene bank accessions to pinpoint genomic signatures of natural selection. We later discuss the necessity to update the current GEA models to predict both regional- and local- or micro-habitat-based adaptation with mechanistic ecophysiological climate indices and cutting-edge GWAS-type genetic association models. Furthermore, to account for polygenic evolutionary adaptation, we encourage the community to start gathering genomic estimated adaptive values (GEAVs) for genomic prediction (GP) and multi-dimensional machine learning (ML) models. The latter two should ideally be weighted by de novo GWAS-based GEA estimates and optimized for a scalable marker subset. We end the review by envisioning avenues to make adaptation inferences more robust through the merging of high-resolution data sources, such as environmental remote sensing and summary statistics of the genomic site frequency spectrum, with the epigenetic molecular functionality responsible for plastic inheritance in the wild. Ultimately, we believe that coupling evolutionary adaptive predictions with innovations in ecological genomics such as GEA will help capture hidden genetic adaptations to abiotic stresses based on crop germplasm resources to assist responses to climate change. "I shall endeavor to find out how nature's forces act upon one another, and in what manner the geographic environment exerts its influence on animals and plants. In short, I must find out about the harmony in nature" Alexander von Humboldt-Letter to Karl Freiesleben, June 1799.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Felipe López-Hernández
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Matthew W. Blair
- Department of Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
7
|
Aguilar OM, Collavino MM, Mancini U. Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication. Sci Rep 2022; 12:4591. [PMID: 35301409 PMCID: PMC8931114 DOI: 10.1038/s41598-022-08720-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (common bean), having a proposed Mexican origin within the Americas, comprises three centers of diversification: Mesoamerica, the southern Andes, and the Amotape-Huancabamba Depression in Peru-Ecuador. Rhizobium etli is the predominant rhizobium found symbiotically associated with beans in the Americasalthough closely related Rhizobium phylotypes have also been detected. To investigate if symbiosis between bean varieties and rhizobia evolved affinity, firstly nodulation competitiveness was studied after inoculation with a mixture of sympatric and allopatric rhizobial strains isolated from the respective geographical regions. Rhizobia strains harboring nodC types α and [Formula: see text], which were found predominant in Mexico and Ecuador, were comparable in nodule occupancy at 50% of each in beans from the Mesoamerican and Andean gene pools, but it is one of those two nodC types which clearly predominated in Ecuadorian-Peruvian beans as well as in Andean beans nodC type [Formula: see text] predominated the sympatric nodC type δ. The results indicated that those beans from Ecuador-Peru and Andean region, respectively exhibited no affinity for nodulation by the sympatric rhizobial lineages that were found to be predominant in bean nodules formed in those respective areas. Unlike the strains isolated from Ecuador, Rhizobium etli isolated from Mexico as well from the southern Andes was highly competitive for nodulation in beans from Ecuador-Peru, and quite similarly competitive in Mesoamerican and Andean beans. Finally, five gene products associated with symbiosis were examined to analyze variations that could be correlated with nodulation competitiveness. A small GTPase RabA2, transcriptional factors NIN and ASTRAY, and nodulation factor receptors NFR1 and NFR5- indicated high conservation but NIN, NFR1 and NFR5 of beans representative of the Ecuador-Peru genetic pool clustered separated from the Mesoamerican and Andean showing diversification and possible different interaction. These results indicated that both host and bacterial genetics are important for mutual affinity, and that symbiosis is another trait of legumes that could be sensitive to evolutionary influences and local adaptation.
Collapse
Affiliation(s)
- O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina.
| | - Mónica M Collavino
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - Ulises Mancini
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
8
|
de Carvalho Paulino JF, de Almeida CP, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans. J Appl Genet 2021; 62:585-600. [PMID: 34386968 DOI: 10.1007/s13353-021-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.
Collapse
Affiliation(s)
| | - Caléo Panhoca de Almeida
- Common Bean Genetic Group, Natural Center of Plant Genetics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, MD, USA
| | | | | | | |
Collapse
|
9
|
Cortinovis G, Oppermann M, Neumann K, Graner A, Gioia T, Marsella M, Alseekh S, Fernie AR, Papa R, Bellucci E, Bitocchi E. Towards the Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Common Bean. Curr Protoc 2021; 1:e133. [PMID: 34004060 DOI: 10.1002/cpz1.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conservation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris) is the most economically important for human consumption, and its evolutionary trajectories as a species have been crucial to determining the structure and level of its present and available genetic diversity. Genomic advances are considerably enhancing the characterization and assessment of important genetic variants. For this purpose, the development and availability of, and access to, well-described and efficiently managed genetic resource collections that comprise pure lines derived by single-seed-descent cycles will be paramount for the use of the reservoir of common bean variability and for the advanced breeding of legume crops. This is one of the main aims of the new and challenging European project INCREASE, which is the implementation of Intelligent Collections with appropriate standardized protocols that must be characterized, maintained, and made available, along with the related data, to users such as breeders and researchers. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterizing common bean seeds for seed trait descriptors Basic Protocol 2: Bean seed imaging Basic Protocol 3: Characterizing bean lines for plant trait descriptors specific for common bean Primary Seed Increase.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Markus Oppermann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kerstin Neumann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Graner
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Marco Marsella
- International Treaty on Plant Genetic Resources for Food and Agriculture (FAO), Rome, Italy
| | - Saleh Alseekh
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
10
|
Parker TA, de Sousa LL, de Oliveira Floriani T, Palkovic A, Gepts P. Toward the introgression of PvPdh1 for increased resistance to pod shattering in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:313-325. [PMID: 33130953 DOI: 10.1007/s00122-020-03698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
A common bean shattering-resistance allele of PvPdh1 reduces pod twists during dehiscence, shows dominance that varies by phenotyping method, is part of a selective sweep, and can be introgressed using CAPS markers. Some varieties of common bean (Phaseolus vulgaris L.) suffer from pod shattering, which can severely reduce yields, especially in arid conditions. The PvPdh1 locus on chromosome Pv03 has recently been described as a major locus controlling pod shattering in common bean and could be used to mitigate pod shattering in the future. Despite this, the role of a possible second locus on chromosome Pv08 remains unclear and patterns of dominance and epistasis between alleles of these genes have not been resolved. This information will be vital for efficient selection to decrease pod shattering. Further, the genetic diversity around the PvPdh1 gene has not yet been thoroughly explored, and there are not yet genetic screens that can be used to evaluate pod shattering in segregating populations. Here, we have developed a recombinant inbred population to determine the roles of genes implicated in pod shattering and evaluate the patterns of dominance among the relevant alleles. Our results suggest that a PvPdh1 allele reduces pod valve twisting, and its dominance varies by phenotyping method. This allele is the only genetic variant that provides environmentally stable and widespread resistance to pod shattering in Middle American common beans grown for grain. Further analyses identified a selective sweep around PvPdh1 with greater nucleotide diversity in individuals with the ancestral, shattering-susceptible allele. Finally, we developed simple, effective CAPS markers to facilitate the introgression of PvPdh1 into new varieties of common bean. These genetic resources will be critical for improving the aridity resilience of a major global staple.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Lorenna Lopes de Sousa
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Talissa de Oliveira Floriani
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Antonia Palkovic
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Paul Gepts
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA.
| |
Collapse
|
11
|
de Almeida CP, Paulino JFDC, Morais Carbonell SA, Chiorato AF, Song Q, Di Vittori V, Rodriguez M, Papa R, Benchimol-Reis LL. Genetic Diversity, Population Structure, and Andean Introgression in Brazilian Common Bean Cultivars after Half a Century of Genetic Breeding. Genes (Basel) 2020; 11:E1298. [PMID: 33143347 PMCID: PMC7694079 DOI: 10.3390/genes11111298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Brazil is the largest consumer and third highest producer of common beans (Phaseolus vulgaris L.) worldwide. Since the 1980s, the commercial Carioca variety has been the most consumed in Brazil, followed by Black and Special beans. The present study evaluates genetic diversity and population structure of 185 Brazilian common bean cultivars using 2827 high-quality single-nucleotide polymorphisms (SNPs). The Andean allelic introgression in the Mesoamerican accessions was investigated, and a Carioca panel was tested using an association mapping approach. The results distinguish the Mesoamerican from the Andean accessions, with a prevalence of Mesoamerican accessions (94.6%). When considering the commercial classes, low levels of genetic differentiation were seen, and the Carioca group showed the lowest genetic diversity. However, gain in gene diversity and allelic richness was seen for the modern Carioca cultivars. A set of 1060 'diagnostic SNPs' that show alternative alleles between the pure Mesoamerican and Andean accessions were identified, which allowed the identification of Andean allelic introgression events and shows that there are putative introgression segments in regions enriched with resistance genes. Finally, genome-wide association studies revealed SNPs significantly associated with flowering time, pod maturation, and growth habit, showing that the Carioca Association Panel represents a powerful tool for crop improvements.
Collapse
Affiliation(s)
- Caléo Panhoca de Almeida
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| | - Jean Fausto de Carvalho Paulino
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| | | | - Alisson Fernando Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (S.A.M.C.); (A.F.C.)
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture–Agricultural Research Service (USDA-ARS), Beltsville, MD 20705, USA;
| | - Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica dele Marche, 60131 Ancona, Italy; (V.D.V.); (R.P.)
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy;
- Centro per la Cobservazione e Valorizzazione della Biodiversità Vegetale (CBV), Università degli Studi di Sassari, 07040 Alghero, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica dele Marche, 60131 Ancona, Italy; (V.D.V.); (R.P.)
| | - Luciana Lasry Benchimol-Reis
- Centro de Pesquisa em Recursos Genéticos Vegetais, Instituto Agronômico (IAC), Campinas, São Paulo 13075-630, Brazil; (J.F.d.C.P.); (L.L.B.-R.)
| |
Collapse
|