1
|
Gu Y, Li X, Pan J, Li Y, Bao J. Effects of storage on the physicochemical characteristics of rice with different starch lysophospholipids contents. Food Chem 2025; 481:144006. [PMID: 40147386 DOI: 10.1016/j.foodchem.2025.144006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Whether paddy rice varieties with different starch lysophospholipids (LPLs) exhibit similar changes in the physicochemical characteristics during storage remain largely unknown. This study investigated the dynamic changes in the physicochemical properties of a japonica rice and its low- and high-LPLs mutants during storage at 24 and 37 °C for one year. During storage, resistant starch (RS), peak viscosity, breakdown viscosity, pasting temperature and enthalpy of gelatinization gradually increased, with higher values observed at 37 °C compared to 24 °C after one year of storage. In contrast, the contents of storage protein components and amino acids gradually decreased, with lower values observed at 37 °C than at 24 °C after one year of storage. It seems that these changes were independent of the starch LPLs. However, principal component analysis based on these physicochemical properties successfully distinguished the three genotypes with different LPLs, indicating that LPLs influence the physicochemical properties during storage.
Collapse
Affiliation(s)
- Yue Gu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinyu Li
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jianming Pan
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuqianqian Li
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinsong Bao
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China; Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
2
|
Gu Y, Tong C, Hu Y, Liu L, Bao J. Starch lysophospholipids contents affect storage quality of paddy rice. Carbohydr Polym 2025; 348:122818. [PMID: 39562093 DOI: 10.1016/j.carbpol.2024.122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 11/21/2024]
Abstract
Starch Lysophospholipids (LPLs) have a significant effect on rice grain quality, but how starch LPLs affect paddy rice storage quality is barely understood. The dynamic changes in storage quality indicators of a japonica rice (XS110) and its low LPLs (XS110-J1) and high LPLs (XS110-J2) mutants were investigated. The fatty acid values (FAV) of J1 were significantly higher than those of XS110 and J2 after one year of storage under 24 and 37 °C. Although FAV rose gradually during storage time, it increased relatively more at 37 °C than 24 °C. The malondialdehyde (MDA) content increased significantly in the early stage and decreased gradually during later storage. The MDA content of rice stored at 24 °C was significantly higher than that at 37 °C. The catalase (CAT) activity exhibited a decreasing trend during storage and was relatively higher at 24 °C than 37 °C. The CAT of J2 was significantly higher than those of XS110 and J1. Total lysophospholipid content was relatively stable although some individual LPLs changed significantly during storage. The fatty acid component content in the milled rice decreased during storage, and the content at 37 °C was lower than that at 24 °C. In conclusion, paddy rice with low starch LPLs content is more susceptible to deterioration during storage, suggesting that high starch LPLs can better maintain rice quality and prolong storage time during storage of paddy rice.
Collapse
Affiliation(s)
- Yue Gu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chuan Tong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
3
|
Chang L, Liu Z, Ying X, Kalandarov B, Ergashev M, Tong X, Zhang J, Jin J, Ying J. Molecular Basis of Lipid Metabolism in Oryza sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:3263. [PMID: 39683055 DOI: 10.3390/plants13233263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Lipids are the basic biological molecules in plants, serving as glycerolipids for cell membranes and triacylglycerols as an energy source. Fatty acids are the major components of plant lipids. Both lipids and fatty acids significantly influence rice quality. Recent studies, through genetic analysis, have made significant progress in uncovering the functional mechanisms and regulatory pathways of lipid metabolism including the biological synthesis and degradation of fatty acids, glycerolipids, and triacylglycerols in rice. Meanwhile, quantitative trait loci (QTLs) identified by analyzing the natural variations of the composition and contents of lipids and fatty acids have been integrated and represented on 12 chromosomes. Lipids play multifaceted roles in the growth and development and stress response of rice. Through metabolic engineering and gene-editing technologies, significant advancements have been made in improving the lipid content in rice grains. These studies highlight the understanding the of molecular basis of lipid metabolism and lay a substantial basis for the genetic improvement of rice quality.
Collapse
Affiliation(s)
- Longxue Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
| | - Zhichao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
| | - Xiaoping Ying
- Agro-Tech Extension and Service Station of Jiangbei District, Ningbo 315033, China
| | | | | | - Xiaohong Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Resources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China
| |
Collapse
|
4
|
Yang W, Li X, Zheng X, Wang M, Pan W, Liu P, Zhang Z, Gong C, Zheng L, Yuan H, Li T, Chen W, Qin P, Wang Y, Li S, Ma B, Tu B. Exploring the impact of key physicochemical properties of rice on taste quality and instant rice processing. FRONTIERS IN PLANT SCIENCE 2024; 15:1481207. [PMID: 39574455 PMCID: PMC11578832 DOI: 10.3389/fpls.2024.1481207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Taste quality is one of the most important indicators for assessing the quality of rice. However, there has been a lack of systematic studies investigating the impact factors of taste quality. In this study, chromosomal segment substitution lines (CSSLs) with notable differences in physicochemical properties were obtained by screening the CSSL population. A correlation analysis between the physicochemical properties and the taste qualities of rice revealed that amylose and protein content are significantly negatively correlated with the taste value of both freshly cooked and rehydrated instant rice. The alkali spreading value (ASV) had limited impact on the taste value of rice, but low-ASV rice is more resistant to cooking. Grain chalkiness played a critical role in maintaining the integrity of freshly cooked rice and instant rice grains after rehydration. In summary, our study provides crucial insights and guidance for rice breeding, with the goal of developing excellent quality and enhancing the processing of instant rice.
Collapse
Affiliation(s)
- Wen Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xiaohang Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenxu Pan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pin Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zehua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Caixiong Gong
- Chongzhou Agriculture and Rural Bureau, Chengdu, Sichuan, China
| | - Ling Zheng
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan, China
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Cao H, Gong R, Xiong L, Wang F, Gu H, Li S, He G, Liang S, Luo W, Qiu X. Comparative Metabolome and Transcriptome Analysis Reveals the Possible Roles of Rice Phospholipase A Genes in the Accumulation of Oil in Grains. Int J Mol Sci 2024; 25:11498. [PMID: 39519050 PMCID: PMC11546879 DOI: 10.3390/ijms252111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The phospholipase A (PLA) gene family plays a crucial role in the regulation of plant growth, development and stress response. Although PLA genes have been identified in various plant species, their specific functions and characteristics in oil quality formation of rice grains (Oryza sativa L.) have not been studied yet. Here, we identified and characterized 35 rice PLA genes, which were divided into three subgroups based on gene structures and phylogenetic relationships. These genes are distributed unevenly across 11 rice chromosomes. The promoter sequence of rice PLAs contain multiple plant hormones and stress-related elements. Gene expression analyses in various tissues and under stress conditions indicated that PLAs may be involved in rice growth, development and stress response. In addition, metabolomics, transcriptomics and qRT-PCR analyses between two rice varieties Guang8B (G8B, high oil content) and YueFengB (YFB, low oil content) revealed that the different expressional levels of rice PLA genes were closely related to the differences in the oil content between 'G8B' and 'YFB' grains. The findings of this study provide potential novel insights into the molecular information of the phospholipase A gene family in rice, and underscore the potential functions of PLA genes in rice oil content accumulation, providing valuable resources for future genetic improvement and breeding strategies.
Collapse
Affiliation(s)
- Huasheng Cao
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Rong Gong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Liang Xiong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Fujun Wang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Haiyong Gu
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shuguang Li
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Gao He
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shihu Liang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wenyong Luo
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xianjin Qiu
- College of Agriculture, Yangte University, Jingzhou 434025, China
| |
Collapse
|
6
|
Moin M, Bommineni PR, Tyagi W. Exploration of the pearl millet phospholipase gene family to identify potential candidates for grain quality traits. BMC Genomics 2024; 25:581. [PMID: 38858648 PMCID: PMC11165789 DOI: 10.1186/s12864-024-10504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Phospholipases constitute a diverse category of enzymes responsible for the breakdown of phospholipids. Their involvement in signal transduction with a pivotal role in plant development and stress responses is well documented. RESULTS In the present investigation, a thorough genome-wide analysis revealed that the pearl millet genome contains at least 44 phospholipase genes distributed across its 7 chromosomes, with chromosome one harbouring the highest number of these genes. The synteny analysis suggested a close genetic relationship of pearl millet phospholipases with that of foxtail millet and sorghum. All identified genes were examined to unravel their gene structures, protein attributes, cis-regulatory elements, and expression patterns in two pearl millet genotypes contrasting for rancidity. All the phospholipases have a high alpha-helix content and distorted regions within the predicted secondary structures. Moreover, many of these enzymes possess binding sites for both metal and non-metal ligands. Additionally, the putative promoter regions associated with these genes exhibit multiple copies of cis-elements specifically responsive to biotic and abiotic stress factors and signaling molecules. The transcriptional profiling of 44 phospholipase genes in two genotypes contrasting for rancidity across six key tissues during pearl millet growth revealed a predominant expression in grains, followed by seed coat and endosperm. Specifically, the genes PgPLD-alpha1-1, PgPLD-alpha1-5, PgPLD-delta1-7a, PgPLA1-II-1a, and PgPLD-delta1-2a exhibited notable expression in grains of both the genotypes while showing negligible expression in the other five tissues. The sequence alignment of putative promoters revealed several variations including SNPs and InDels. These variations resulted in modifications to the corresponding cis-acting elements, forming distinct transcription factor binding sites suggesting the transcriptional-level regulation for these five genes in pearl millet. CONCLUSIONS The current study utilized a genome-wide computational analysis to characterize the phospholipase gene family in pearl millet. A comprehensive expression profile of 44 phospholipases led to the identification of five grain-specific candidates. This underscores a potential role for at least these five genes in grain quality traits including the regulation of rancidity in pearl millet. Therefore, this study marks the first exploration highlighting the possible impact of phospholipases towards enhancing agronomic traits in pearl millet.
Collapse
Affiliation(s)
- Mazahar Moin
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India
| | - Wricha Tyagi
- Cell and Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Patancheru, Telangana, 502324, India.
| |
Collapse
|
7
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
9
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Kumar S, DePauw RM, Kumar S, Kumar J, Kumar S, Pandey MP. Breeding and adoption of biofortified crops and their nutritional impact on human health. Ann N Y Acad Sci 2023; 1520:5-19. [PMID: 36479674 DOI: 10.1111/nyas.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Micronutrient malnutrition has affected over two billion people worldwide and continues to be a health risk. A growing human population, poverty, and the prevalence of low dietary diversity are jointly responsible for malnutrition, particularly in developing nations. Inadequate bioavailability of key micronutrients, such as iron (Fe), zinc (Zn), and vitamin A, can be improved through agronomic and/or genetic interventions. The Consultative Group on International Agricultural Research prioritizes developing biofortified food crops that are rich in minerals and vitamins through the HarvestPlus initiative on biofortification. The objective of this review is to provide an overview of biofortified food crops along with evidence supporting their acceptability and adoption. Between 2004 and 2019, 242 biofortified varieties belonging to 11 major crops were released in 30 countries across Asia, Africa, and Latin America. These conventionally bred biofortified crops include Fe-enriched beans, pearl millet, and cowpea; Zn-enriched rice, wheat, and maize; both Fe- and Zn-enriched lentil and sorghum; and varieties with improved vitamin A in orange-fleshed sweet potato, maize, cassava, and banana/plantain. In addition to ongoing efforts, breeding innovations, such as speed breeding and CRISPR-based gene editing technologies, will be necessary for the next decade to reach two billion people with biofortified crops.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Ron M DePauw
- Advancing Wheat Technologies, Calgary, Alberta, Canada
| | - Sudhir Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Jitendra Kumar
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Madhav P Pandey
- Department of Genetics and Plant Breeding, Agriculture and Forestry University (AFU), Rampur, Nepal
| |
Collapse
|
11
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
12
|
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. PLANT COMMUNICATIONS 2022; 3:100271. [PMID: 35576153 PMCID: PMC9251384 DOI: 10.1016/j.xplc.2021.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/14/2023]
Abstract
The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Rhowell N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
14
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
15
|
Deepika D, Singh A. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 2021; 42:106-124. [PMID: 34167393 DOI: 10.1080/07388551.2021.1924113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.
Collapse
Affiliation(s)
- Deepika Deepika
- National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|