1
|
Zare T, Fournier-Level A, Ebert B, Roessner U. Chia (Salvia hispanica L.), a functional 'superfood': new insights into its botanical, genetic and nutraceutical characteristics. ANNALS OF BOTANY 2024; 134:725-746. [PMID: 39082745 PMCID: PMC11560377 DOI: 10.1093/aob/mcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers owing to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of the fatty acids and proteins in chia seeds have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE This review article aims to provide an overview of the botanical, morphological and biochemical features of chia plants, seeds and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical and agricultural applications of chia. In this context, we discuss the latest research on chia and the questions that remain unanswered, and we identify areas that require further exploration. CONCLUSIONS Nutraceutical compounds associated with significant health benefits, including ω-3 polyunsaturated fatty acids, proteins and phenolic compounds with antioxidant activity, have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial and antifungal effects of chia seeds. The recently published genome of chia and gene-editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection and large-scale transcriptomic datasets for chia.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biology and Biotechnology, The Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
2
|
Kirsch B, Fisher JB, Piechota T, Hassani M, Suardiaz DC, Puri R, Cahill J, Atamian HS. Satellite observations indicate that chia uses less water than other crops in warm climates. Commun Biol 2024; 7:1225. [PMID: 39349596 PMCID: PMC11442738 DOI: 10.1038/s42003-024-06841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Many parts of the world face severe and prolonged drought conditions, stressing the sustainability of water resources and agriculture. Transitioning to water-efficient crops is one strategy that can help adapt to water scarcity. An emerging drought-tolerant crop of interest is chia (Salvia hispanica). Yet, no study has compared its large-scale water use dynamics to those of widely established crops across the globe. Here, we use satellite data over multiple years to assess the water use efficiency of chia, alfalfa, corn, and soybean globally. Results show that chia consumed 13-38% less water than alfalfa, corn, and soy and assimilated 14-20% more carbon per amount of water used. Substituting 10% of Southwest United States alfalfa cultivation with chia would save 184 million liters of water per growing season, equivalent to the annual water consumption of 1,300 households. Future research shall explore the economic, societal, and environmental ramifications of substituting alfalfa with chia in dry areas worldwide. These insights can guide decision-makers in promoting sustainable agriculture and water resource management.
Collapse
Affiliation(s)
- Brian Kirsch
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Thomas Piechota
- Fowler School of Engineering, Chapman University, Orange, CA, USA
| | - Mohammad Hassani
- Fowler School of Engineering, Chapman University, Orange, CA, USA
| | - Diego C Suardiaz
- Faculty of Biological Sciences, University of Veracruz, Veracruz, Mexico
| | - Radhika Puri
- Fowler School of Engineering, Chapman University, Orange, CA, USA
| | | | - Hagop S Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| |
Collapse
|
3
|
Zare T, Paril JF, Barnett EM, Kaur P, Appels R, Ebert B, Roessner U, Fournier-Level A. Comparative genomics points to tandem duplications of SAD gene clusters as drivers of increased α-linolenic (ω-3) content in S. hispanica seeds. THE PLANT GENOME 2024; 17:e20430. [PMID: 38339968 DOI: 10.1002/tpg2.20430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Salvia hispanica L. (chia) is a source of abundant ω-3 polyunsaturated fatty acids (ω-3-PUFAs) that are highly beneficial to human health. The genomic basis for this accrued ω-3-PUFA content in this emerging crop was investigated through the assembly and comparative analysis of a chromosome-level reference genome for S. hispanica. The highly contiguous 321.5-Mbp genome assembly covering all six chromosomes enabled the identification of 32,922 protein-coding genes. Two whole-genome duplications (WGD) events were identified in the S. hispanica lineage. However, these WGD events could not be linked to the high α-linolenic acid (ALA, ω-3) accumulation in S. hispanica seeds based on phylogenomics. Instead, our analysis supports the hypothesis that evolutionary expansion through tandem duplications of specific lipid gene families, particularly the stearoyl-acyl carrier protein desaturase (ShSAD) gene family, is the main driver of the abundance of ω-3-PUFAs in S. hispanica seeds. The insights gained from the genomic analysis of S. hispanica will help establish a molecular breeding target that can be leveraged through genome editing techniques to increase ω-3 content in oil crops.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeff F Paril
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Berit Ebert
- School of Biology and Biotechnology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
4
|
Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules 2023; 28:molecules28062728. [PMID: 36985699 PMCID: PMC10056211 DOI: 10.3390/molecules28062728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The purpose of this study was to evaluate the phytochemical profiles of the seeds, sprouts, leaves, flowers, roots and herb of Salvia hispanica and to demonstrate their significant contribution to antioxidant and antimicrobial activities. Applied methods were: HPLC-DAD coupled with post-column derivatization with ABTS reagent, untargeted metabolomics performed by LC-Q-Orbitrap HRMS, and two-fold micro-dilution broth method, which involved suspending a solution of tested compounds dissolved in DMSO in Mueller–Hinton broth for bacteria or Mueller–Hinton broth with 2% glucose for fungi. Metabolomic profiling using LC-Q-Orbitrap HRMS used in this study yielded the identification and preliminary characterization of one hundred fifteen compounds. The dominant class of compounds was terpenoids (31 compounds), followed by flavonoids (21 compounds), phenolic acids and derivatives (19 compounds), organic acids (16 compounds) and others (fatty acids, sugars and unidentified compounds). The organic and phenolic acids were the most abundant classes in terms of total peak area, with distribution depending on the plant raw materials obtained from S. hispanica. The main compound among this class for all types of extracts was rosmarinic acid which was proven to be the most abundant for antioxidant potential. All tested extracts exhibited considerable antibacterial and antifungal activity. The strongest bioactivity was found in leaf extracts, which presented bactericidal activity against Gram-positive bacteria (S. aureus, S. epidermidis, M. luteus and E. faecalis). The work represents the first compendium of knowledge comparing different S. hispanica plant raw materials in terms of the profile of biologically active metabolites and their contribution to antioxidant, antimicrobial and antifungal activity.
Collapse
|
5
|
Wang L, Lee M, Sun F, Song Z, Yang Z, Yue GH. A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. PLANT COMMUNICATIONS 2022; 3:100326. [PMID: 35605203 PMCID: PMC9284293 DOI: 10.1016/j.xplc.2022.100326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 05/26/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Fei Sun
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zhuojun Song
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zituo Yang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
6
|
Gupta P, Geniza M, Naithani S, Phillips JL, Haq E, Jaiswal P. Chia ( Salvia hispanica) Gene Expression Atlas Elucidates Dynamic Spatio-Temporal Changes Associated With Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:667678. [PMID: 34354718 PMCID: PMC8330693 DOI: 10.3389/fpls.2021.667678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Chia (Salvia hispanica L.), now a popular superfood and a pseudocereal, is one of the richest sources of dietary nutrients such as protein, fiber, and polyunsaturated fatty acids (PUFAs). At present, the genomic and genetic information available in the public domain for this crop are scanty, which hinders an understanding of its growth and development and genetic improvement. We report an RNA-sequencing (RNA-Seq)-based comprehensive transcriptome atlas of Chia sampled from 13 tissue types covering vegetative and reproductive growth stages. We used ~355 million high-quality reads of total ~394 million raw reads from transcriptome sequencing to generate de novo reference transcriptome assembly and the tissue-specific transcript assemblies. After the quality assessment of the merged assemblies and implementing redundancy reduction methods, 82,663 reference transcripts were identified. About 65,587 of 82,663 transcripts were translated into 99,307 peptides, and we were successful in assigning InterPro annotations to 45,209 peptides and gene ontology (GO) terms to 32,638 peptides. The assembled transcriptome is estimated to have the complete sequence information for ~86% of the genes found in the Chia genome. Furthermore, the analysis of 53,200 differentially expressed transcripts (DETs) revealed their distinct expression patterns in Chia's vegetative and reproductive tissues; tissue-specific networks and developmental stage-specific networks of transcription factors (TFs); and the regulation of the expression of enzyme-coding genes associated with important metabolic pathways. In addition, we identified 2,411 simple sequence repeats (SSRs) as potential genetic markers from the transcripts. Overall, this study provides a comprehensive transcriptome atlas, and SSRs, contributing to building essential genomic resources to support basic research, genome annotation, functional genomics, and molecular breeding of Chia.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy L. Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
7
|
Klein A, Husselmann LHH, Williams A, Bell L, Cooper B, Ragar B, Tabb DL. Proteomic Identification and Meta-Analysis in Salvia hispanica RNA-Seq de novo Assemblies. PLANTS (BASEL, SWITZERLAND) 2021; 10:765. [PMID: 33919777 PMCID: PMC8070742 DOI: 10.3390/plants10040765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/24/2022]
Abstract
While proteomics has demonstrated its value for model organisms and for organisms with mature genome sequence annotations, proteomics has been of less value in nonmodel organisms that are unaccompanied by genome sequence annotations. This project sought to determine the value of RNA-Seq experiments as a basis for establishing a set of protein sequences to represent a nonmodel organism, in this case, the pseudocereal chia. Assembling four publicly available chia RNA-Seq datasets produced transcript sequence sets with a high BUSCO completeness, though the number of transcript sequences and Trinity "genes" varied considerably among them. After six-frame translation, ProteinOrtho detected substantial numbers of orthologs among other species within the taxonomic order Lamiales. These protein sequence databases demonstrated a good identification efficiency for three different LC-MS/MS proteomics experiments, though a seed proteome showed considerable variability in the identification of peptides based on seed protein sequence inclusion. If a proteomics experiment emphasizes a particular tissue, an RNA-Seq experiment incorporating that same tissue is more likely to support a database search identification of that proteome.
Collapse
Affiliation(s)
- Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (A.K.); (L.H.H.H.); (A.W.)
| | - Lizex H. H. Husselmann
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (A.K.); (L.H.H.H.); (A.W.)
| | - Achmat Williams
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (A.K.); (L.H.H.H.); (A.W.)
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Cape Town 7925, South Africa;
| | - Bret Cooper
- USDA Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Brent Ragar
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02150, USA;
| | - David L. Tabb
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (A.K.); (L.H.H.H.); (A.W.)
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
8
|
Chen Q, Song Q, Yang X, Han H, Zhang X, Liao Y, Zhang W, Ye J, Cheng S, Xu F. Characterization of a novel levopimaradiene synthase gene responsible for the biosynthesis of terpene trilactones in Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1885906. [PMID: 33570442 PMCID: PMC7971208 DOI: 10.1080/15592324.2021.1885906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Terpene trilactones (TTLs) are the main medicinal compounds of Ginkgo biloba. Levopimaradiene synthase (LPS) is the crucial enzyme that catalyzes TTLs biosynthesis in G. biloba. In this study, a novel LPS gene (designated as GbLPS2) was cloned from G. biloba leaves. The open reading frame of GbLPS2 gene was 2520 bp in length, encoding a predicted polypeptide of 840 amino acids. Phylogenetic analysis revealed that the GbLPS2 was highly homologous with reported LPS proteins in other plants. On the basis of the genomic DNA (gDNA) template, a 4308 bp gDNA sequence of GbLPS2 and a 913 bp promoter sequence were amplified. Cis-acting elements in promoter analysis indicated that GbLPS2 could be regulated by methyl jasmonate (MeJA) and abscisic acid (ABA). Tissue-specific expression analysis revealed that GbLPS2 was mainly expressed in roots and ovulate strobilus. MeJA treatment could significantly induce the expression level of GbLPS2 and increase the content of TTLs. This study illustrates the structure and the tissue-specific expression pattern of GbLPS2 and demonstrates that exogenous hormones regulated the expression of GbLPS2 and TTL content in G. biloba. Our results provide a target gene for the enhancement of TTL content in G. biloba via genetic engineering.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|