1
|
Zubairova US, Fomin IN, Koloshina KA, Barchuk AI, Erst TV, Chalaya NA, Gerasimova SV, Doroshkov AV. Image-Based Quantitative Analysis of Epidermal Morphology in Wild Potato Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:3084. [PMID: 39520002 PMCID: PMC11548698 DOI: 10.3390/plants13213084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The epidermal leaf patterns of plants exhibit remarkable diversity in cell shapes, sizes, and arrangements, driven by environmental interactions that lead to significant adaptive changes even among closely related species. The Solanaceae family, known for its high diversity of adaptive epidermal structures, has traditionally been studied using qualitative phenotypic descriptions. To advance this, we developed a workflow combining multi-scale computer vision, image processing, and data analysis to extract digital descriptors for leaf epidermal cell morphology. Applied to nine wild potato species, this workflow quantified key morphological parameters, identifying descriptors for trichomes, stomata, and pavement cells, and revealing interdependencies among these traits. Principal component analysis (PCA) highlighted two main axes, accounting for 45% and 21% of variance, corresponding to features such as guard cell shape, trichome length, stomatal density, and trichome density. These axes aligned well with the historical and geographical origins of the species, separating southern from Central American species, and forming distinct clusters for monophyletic groups. This workflow thus establishes a quantitative foundation for investigating leaf epidermal cell morphology within phylogenetic and geographic contexts.
Collapse
Affiliation(s)
- Ulyana S. Zubairova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan N. Fomin
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Kristina A. Koloshina
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alisa I. Barchuk
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatyana V. Erst
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia;
| | - Sophia V. Gerasimova
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.N.F.); (K.A.K.); (A.I.B.); (T.V.E.); (S.V.G.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Kallavus T, Kaasik R, Leemet T, Soots K, Soonvald L, Sulg S, Veromann E. Laboratory sprayer for dsRNA application: Design and bioassay validation. MethodsX 2024; 12:102734. [PMID: 38707218 PMCID: PMC11068844 DOI: 10.1016/j.mex.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
The shortage of commercially available and reliable laboratory spraying equipment for testing different preparations can be a major obstacle to achieve field-comparable results in the laboratory conditions. RNA interference is natural biological process which, when used for plant protection, can be designed method combining sustainability and minimal environmental side effects. Spraying of dsRNA is a field-relevant method that should ensure consistency and repeatability if conducted in laboratory. We built a portable spray device for laboratory use and tested its suitability for dsRNA application. For that, we carried out bioassay on three plant species with different leaf surface textures. DsRNA were detected in all samples 3 days post-treatment indicating its suitability for dsRNA delivery. We built a portable spray device for laboratory use and tested its suitability for dsRNA application. For that, we carried out:•Bioassay on three plant species with different leaf surface textures. DsRNA were detected in all samples 3 days post-treatment indicating its suitability for dsRNA delivery.
Collapse
Affiliation(s)
- Triin Kallavus
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Riina Kaasik
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tõnu Leemet
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Kaarel Soots
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Liina Soonvald
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Silva Sulg
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Eve Veromann
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| |
Collapse
|
3
|
Ding L, Zhou X, Liang X, Dong Y, Fang C, Wu Y, Li B, Mu W, Lin J, Li Y. Achieving High Efficacy and Low Safety Risk by Balancing Pesticide Deposition on Leaves and Fruits of Chinese Wolfberry ( Lycium barbarum L.). ACS OMEGA 2023; 8:14672-14683. [PMID: 37125088 PMCID: PMC10134462 DOI: 10.1021/acsomega.3c00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Pesticide residue has become the main technical barrier that restricts the export of Chinese wolfberry. Can we achieve high efficacy and low safety risk by balancing pesticide deposition on the leaves and fruits of Chinese wolfberry? In this research, the structural characteristics and wettability of leaves and fruits of Chinese wolfberry at different growth stages were studied. The adaxial and abaxial surfaces of leaves were hydrophobic, whereas the fruit surfaces were hydrophilic. Adding spray adjuvant could increase the retention of droplets on the leaf surfaces of Chinese wolfberry by 52.28-97.89% and reduce the retention on the fruit surfaces by 21.68-42.14%. A structural equation model analysis showed that the adhesion tension was the key factor affecting the retention of the solutions among various interface behaviors. When the concentrations of Silwet618, AEO-5, Gemini 31551, and 1227 were 2-5 times higher than their CMCs, the retention of pesticide solutions (pyraclostrobin and tylophorine) on Chinese wolfberry leaves significantly increased, and the control efficacies on aphids and powdery mildew also dramatically improved (65.90-105.15 and 41.18-133.06%, respectively). Meanwhile, the retention of pesticides on the fruit of Chinese wolfberry was reduced. This study provides new insights into increasing the utilization of pesticides in controlling pests and improving food safety.
Collapse
Affiliation(s)
- Lei Ding
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Xuan Zhou
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Xiaojie Liang
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| | - Yujin Dong
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Cunbao Fang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yueming Wu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Beixing Li
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Wei Mu
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Jin Lin
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Tai’an 271018, Shandong, P. R. China
- Research
Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai’an 271018, Shandong, P. R. China
| | - Yuekun Li
- National
Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, P. R. China
- Wolfberry
Science Research Institute, Ningxia Academy
of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, P. R. China
| |
Collapse
|
4
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|