1
|
Zhou Y, Wang X, Chen K, Han C, Guan H, Wang Y, Zhao Y. Feasibility and potential of terahertz spectral and imaging technology for Apple Valsa canker detection: A preliminary investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125308. [PMID: 39490176 DOI: 10.1016/j.saa.2024.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Apple Valsa canker (AVC) caused by the Ascomycete Valsa mali, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of Valsa mali make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark's appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.
Collapse
Affiliation(s)
- Yibo Zhou
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Wang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Keming Chen
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaoyue Han
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongpu Guan
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Kumar S, Chakravarty A, Sahoo L. Geminivirus diseases of legumes in India: current status and approaches for management. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:41-65. [PMID: 39901958 PMCID: PMC11787143 DOI: 10.1007/s12298-024-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 02/05/2025]
Abstract
India has a large potential for producing a variety of legumes which are proficiently valued for small grower to the highest producers. Plant viruses predominate among the many factors that affect the production of legumes. In tropical and subtropical locations, begomovirus has become a significant productivity barrier for legume production with significant losses. The detection and molecular characterization of various begomoviruses species have been done with regard to phylogenetic analyses, infectivity on host plants, DNA replication, transgenic resistance, promoter analysis, and development of virus-based gene-silencing vectors using several techniques. The molecular detection of begomoviruses involves a variety of techniques, including polymerase chain reaction (PCR), using degenerate primers, reverse transcription PCR (RT-PCR), real time quantitative PCR, rolling-circle amplification PCR (RCA-PCR assay), RCA, and microarray/DNA chip. Begomovirus infections can be prevented by various methods such as by controlling vector populations, use of culture practices, developing virus-free planting materials, developing resistant varieties, following quarantine regulations, and adapting modern methods, including pathogen-derived resistance (PDR), RNA interference (RNAi)-mediated resistance and genome editing approach. This review focuses on current status of geminiviruses infecting various legumes, pathogenesis, genetic flexibility, recombination of begomovirus responsible for the wide host range, modern methods of control, including PDR, RNAi-mediated resistance, small RNA (sRNA)- mediated resistance, Engineered Nucleases, Zinc Finger nucleases, Transcriptional Activator nucleases, CRISPR/Cas9 mediated genome editing and various strategies for management of begomoviruses. The present study entails the view and understanding of different approaches for the begomovirus management which state knowledge about limiting the crop losses.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Anurabh Chakravarty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
3
|
Kissell LN, Liu H, Sheokand M, Vang D, Kachroo P, Strobbia P. Direct Detection of Tobacco Mosaic Virus in Infected Plants with SERS-Sensing Hydrogels. ACS Sens 2024; 9:514-523. [PMID: 38195409 DOI: 10.1021/acssensors.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The impact of plant pathogens on global crop yields is a major societal concern. The current agricultural diagnostic paradigm involves either visual inspection (inaccurate) or laboratory molecular tests (burdensome). While field-ready diagnostic methods have advanced in recent years, issues remain with detection of presymptomatic infections, multiplexed analysis, and requirement for in-field sample processing. To overcome these issues, we developed surface-enhanced Raman scattering (SERS)-sensing hydrogels that detect pathogens through simple contact with a leaf. In this work, we developed a novel reagentless SERS sensor for the detection of tobacco mosaic virus (TMV) and embedded it in an optimized hydrogel material to produce sensing hydrogels. To test the diagnostic application of our sensing hydrogels, we demonstrate their use to detect TMV infection in tobacco plants. This technology has the potential to shift the current agricultural diagnostic paradigm by offering a field-deployable tool for presymptomatic and multiplexed molecular identification of pathogens.
Collapse
Affiliation(s)
- Lyndsay N Kissell
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Manisha Sheokand
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Der Vang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Zhao X, Wu J, Ma Z, Shi Y, Fang Z, Wu J, Yang X, Zhou X. Development and application of monoclonal antibody-based dot-ELISA and colloidal gold immunochromatographic strip for rapid, specific, and sensitive detection of tomato brown rugose fruit virus. J Virol Methods 2024; 323:114841. [PMID: 37939857 DOI: 10.1016/j.jviromet.2023.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that has become a great concern to tomato production industry. Due to the lack of resistant cultivars, precise detection of ToBRFV is essential to prevent the spread of ToBRFV. In this study, we produced highly sensitive and specific monoclonal antibodies against ToBRFV and established dot-enzyme-linked immunosorbent assay (dot-ELISA) and colloidal gold immunochromatographic strip (CGICS)-based methods for ToBRFV detection. These two methods could specifically detect ToBRFV without cross-reaction with seven tested tobamoviruses and three frequently occurring tomato-infecting viruses. Sensitivity analysis showed that the limit of detection of the established dot-ELISA and CGICS methods reached up to 1:6400 and 1:10,000 (w/v, g/mL) dilution of ToBRFV-infected tomato tissue, respectively. Further analyses using field-collected tomato foliar and fruit samples showed that the results obtained by dot-ELISA and CGICS were consistent with those obtained by reverse transcription polymerase chain reaction. The established methods here allow for specific, sensitive, and robust detection of ToBRFV, and will be helpful for precise monitoring and early warning of ToBRFV.
Collapse
Affiliation(s)
- Xinru Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ziyue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhu Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Yilmaz S, Batuman O. Co-Infection of Tomato Brown Rugose Fruit Virus and Pepino Mosaic Virus in Grocery Tomatoes in South Florida: Prevalence and Genomic Diversity. Viruses 2023; 15:2305. [PMID: 38140546 PMCID: PMC10748365 DOI: 10.3390/v15122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an economically important seed and mechanically transmitted pathogen of significant importance to tomato production around the globe. Synergistic interaction with pepino mosaic virus (PepMV), another seed and mechanically transmitted virus, and long-distance dissemination of these two viruses via contaminated tomato fruits through global marketing were previously suggested. In 2019, we detected both viruses in several grocery store-purchased tomatoes in South Florida, USA. In this study, to identify potential sources of inoculum, co-infection status, prevalence, and genomic diversity of these viruses, we surveyed symptomatic and asymptomatic imported tomatoes sold in ten different groceries in four cities in South Florida. According to the product labels, all collected tomatoes originated from Canada, Mexico, or repacking houses in the United States. With high prevalence levels, 86.5% of the collected samples were infected with ToBRFV, 90% with PepMV alone, and 73% were mixed-infected. The phylogenetic study showed no significant correlations between ToBRFV genomic diversity and the tomato label origin. Phylogenetic analysis of PepMV isolates revealed the prevalence of the PepMV strains, Chilean (CH2) and recombinant (US2). The results of this study highlight the continual presence of PepMV and ToBRFV in imported tomatoes in Florida grocery stores.
Collapse
Affiliation(s)
| | - Ozgur Batuman
- Southwest Florida Research and Education Center, Department of Plant Pathology, University of Florida, Immokalee, FL 34142, USA;
| |
Collapse
|
6
|
Salem NM, Jewehan A, Aranda MA, Fox A. Tomato Brown Rugose Fruit Virus Pandemic. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:137-164. [PMID: 37268006 DOI: 10.1146/annurev-phyto-021622-120703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus. It was first reported in 2015 in Jordan in greenhouse tomatoes and now threatens tomato and pepper crops around the world. ToBRFV is a stable and highly infectious virus that is easily transmitted by mechanical means and via seeds, which enables it to spread locally and over long distances. The ability of ToBRFV to infect tomato plants harboring the commonly deployed Tm resistance genes, as well as pepper plants harboring the L resistance alleles under certain conditions, limits the ability to prevent damage from the virus. The fruit production and quality of ToBRFV-infected tomato and pepper plants can be drastically affected, thus significantly impacting their market value. Herein, we review the current information and discuss the latest areas of research on this virus, which include its discovery and distribution, epidemiology, detection, and prevention and control measures, that could help mitigate the ToBRFV disease pandemic.
Collapse
Affiliation(s)
- Nida' M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, Jordan;
| | - Ahmad Jewehan
- Applied Plant Genomics Group, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CSIC), Murcia, Spain
| | - Adrian Fox
- Fera Science, Sand Hutton, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
A Novel Platform for Root Protection Applies New Root-Coating Technologies to Mitigate Soil-Borne Tomato Brown Rugose Fruit Virus Disease. Viruses 2023; 15:v15030728. [PMID: 36992437 PMCID: PMC10051058 DOI: 10.3390/v15030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a soil-borne virus showing a low percentage of ca. 3% soil-mediated infection when the soil contains root debris from a previous 30–50 day growth cycle of ToBRFV-infected tomato plants. We designed stringent conditions of soil-mediated ToBRFV infection by increasing the length of the pre-growth cycle to 90–120 days, adding a ToBRFV inoculum as well as truncating seedling roots, which increased seedling susceptibility to ToBRFV infection. These rigorous conditions were employed to challenge the efficiency of four innovative root-coating technologies in mitigating soil-mediated ToBRFV infection while avoiding any phytotoxic effect. We tested four different formulations, which were prepared with or without the addition of various virus disinfectants. We found that under conditions of 100% soil-mediated ToBRFV infection of uncoated positive control plants, root-coating with formulations based on methylcellulose (MC), polyvinyl alcohol (PVA), silica Pickering emulsion and super-absorbent polymer (SAP) that were prepared with the disinfectant chlorinated-trisodium phosphate (Cl-TSP) showed low percentages of soil-mediated ToBRFV infection of 0%, 4.3%, 5.5% and 0%, respectively. These formulations had no adverse effect on plant growth parameters when compared to negative control plants grown under non ToBRFV inoculation conditions.
Collapse
|
8
|
Matzrafi M, Abu-Nassar J, Klap C, Shtarkman M, Smith E, Dombrovsky A. Solanum elaeagnifolium and S. rostratum as potential hosts of the tomato brown rugose fruit virus. PLoS One 2023; 18:e0282441. [PMID: 36857395 PMCID: PMC9977001 DOI: 10.1371/journal.pone.0282441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Invasive weeds cause significant crop yield and economic losses in agriculture. The highest indirect impact may be attributed to the role of invasive weeds as virus reservoirs within commercial growing areas. The new tobamovirus tomato brown rugose fruit virus (ToBRFV), first identified in the Middle East, overcame the Tm-22 resistance allele of cultivated tomato varieties and caused severe damage to crops. In this study, we determined the role of invasive weed species as potential hosts of ToBRFV and a mild strain of pepino mosaic virus (PepMV-IL). Of newly tested weed species, only the invasive species Solanum elaeagnifolium and S. rostratum, sap inoculated with ToBRFV, were susceptible to ToBRFV infection. S. rostratum was also susceptible to PepMV-IL infection. No phenotype was observed on ToBRFV-infected S. elaeagnifolium grown in the wild or following ToBRFV sap inoculation. S. rostratum plants inoculated with ToBRFV contained a high ToBRFV titer compared to ToBRFV-infected S. elaeagnifolium plants. Mixed infection with ToBRFV and PepMV-IL of S. rostratum plants, as well as S. nigrum plants (a known host of ToBRFV and PepMV), displayed synergism between the two viruses, manifested by increasing PepMV-IL levels. Additionally, when inoculated with either ToBRFV or PepMV-IL, disease symptoms were apparent in S. rostratum plants and the symptoms were exacerbated upon mixed infections with both viruses. In a bioassay, ToBRFV-inoculated S. elaeagnifolium, S. rostratum and S. nigrum plants infected tomato plants harboring the Tm-22 resistant allele with ToBRFV. The distribution and abundance of these Solanaceae species increase the risks of virus transmission between species.
Collapse
Affiliation(s)
- Maor Matzrafi
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization (ARO)–Volcani Institute, Ramat Yishay, Israel
- * E-mail:
| | - Jackline Abu-Nassar
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization (ARO)–Volcani Institute, Ramat Yishay, Israel
| | - Chen Klap
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Meital Shtarkman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)–Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
9
|
Hilaire J, Tindale S, Jones G, Pingarron-Cardenas G, Bačnik K, Ojo M, Frewer LJ. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. AGRICULTURE & FOOD SECURITY 2022; 11:21. [PMID: 35310134 PMCID: PMC8917942 DOI: 10.1186/s40066-022-00366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Research into public risk perceptions associated with emerging risks in agriculture and supply chains has focused on technological risks, zoonotic diseases, and food integrity, but infrequently on naturally occurring diseases in plants. Plant virus infections account for global economic losses estimated at $30 billion annually and are responsible for nearly 50% of plant diseases worldwide, threatening global food security. This research aimed to understand public perceptions of emerging risks and benefits associated with plant viruses in agriculture in Belgium, Slovenia, Spain, and the UK.
Methods
Online qualitative semi-structured interviews with 80 European consumers were conducted, including 20 participants in each of Belgium, Slovenia, the UK, and Spain. Microsoft Streams was used to transcribe the interview data, and NVivo was utilized to code the transcripts and analyze the data.
Results
The results indicate that, while study participants were relatively unfamiliar with the plant viruses and their potential impacts, plant viruses evoked perceived risks in a similar way to other emerging risks in the agri-food sector. These included risks to environment and human health, and the economic functioning of the relevant supply chain. Some participants perceived both risks and benefits to be associated with plant viruses. Benefits were perceived to be associated with improved plant resistance to viruses.
Conclusions
The results provide the basis for risk regulation, policy, and communication developments. Risk communication needs to take account of both risk and benefit perceptions, as well as the observation that plant viruses are perceived as an emerging, rather than an established, understood, and controlled risk. Some participants indicated the need for risk–benefit communication strategies to be developed, including information about the impacts of the risks, and associated mitigation strategies. Participants perceived that responsibility for control of plant viruses should be conferred on actors within the supply chain, in particular primary producers, although policy support (for example, financial incentivization) should be provided to improve their motivation to instigate risk mitigation activities.
Collapse
|
10
|
Stafford E, Kot M. Optimal reduced-mixing for an SIS infectious-disease model. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:746-765. [PMID: 36415142 DOI: 10.1080/17513758.2022.2148764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Which reduced-mixing strategy maximizes economic output during a disease outbreak? To answer this question, we formulate an optimal-control problem that maximizes the difference between revenue, due to healthy individuals, and medical costs, associated with infective individuals, for SIS disease dynamics. The control variable is the level of mixing in the population, which influences both revenue and the spread of the disease. Using Pontryagin's maximum principle, we find a closed-form solution for our problem. We explore an example of our problem with parameters for the transmission of Staphylococcus aureus in dairy cows, and we perform sensitivity analyses to determine how model parameters affect optimal strategies. We find that less mixing is preferable when the transmission rate is high, the per-capita recovery rate is low, or when the revenue parameter is much smaller than the cost parameter.
Collapse
Affiliation(s)
- Erin Stafford
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Mark Kot
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
ToBRFV Infects the Reproductive Tissues of Tomato Plants but Is Not Transmitted to the Progenies by Pollination. Cells 2022; 11:cells11182864. [PMID: 36139436 PMCID: PMC9496811 DOI: 10.3390/cells11182864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV), a newly identified Tobamovirus, has recently emerged as a significant pathogen of tomato plants (Solanum lycopersicum). The virus can evade or overcome the known tobamovirus resistance in tomatoes, i.e., Tm-1, Tm-2, and its allele Tm-22. ToBRFV was identified for the first time only a few years ago, and its interactions with the tomato host are still not clear. We investigated ToBRFV’s presence in the reproductive tissues of tomato using fluorescent in situ hybridization (FISH) and RT-PCR. In infected plants, the virus was detected in the leaves, petals, ovary, stamen, style, stigma, and pollen grains but not inside the ovules. Fruits and seeds harvested from infected plants were contaminated with the virus. To test whether the virus is pollen transmitted, clean mother plants were hand pollinated with pollen from ToBRFV-infected plants and grown to fruit. None of the fruits and seeds harvested from the pollinated clean mother plants contained ToBRFV. Pollen germination assays revealed the germination arrest of ToBRFV-infected pollen. We concluded that ToBRFV might infect reproductive organs and pollen grains of tomato but that it is not pollen transmitted.
Collapse
|
12
|
Pepper Plants Harboring L Resistance Alleles Showed Tolerance toward Manifestations of Tomato Brown Rugose Fruit Virus Disease. PLANTS 2022; 11:plants11182378. [PMID: 36145781 PMCID: PMC9506004 DOI: 10.3390/plants11182378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The tobamovirus tomato brown rugose fruit virus (ToBRFV) infects tomato plants harboring the Tm-22 resistance allele, which corresponds with tobamoviruses’ avirulence (Avr) gene encoding the movement protein to activate a resistance-associated hypersensitive response (HR). ToBRFV has caused severe damage to tomato crops worldwide. Unlike tomato plants, pepper plants harboring the L resistance alleles, which correspond with the tobamovirus Avr gene encoding the coat protein, have shown HR manifestations upon ToBRFV infection. We have found that ToBRFV inoculation of a wide range of undefined pepper plant varieties could cause a “hypersensitive-like cell death” response, which was associated with ToBRFV transient systemic infection dissociated from disease symptom manifestations on fruits. Susceptibility of pepper plants harboring L1, L3, or L4 resistance alleles to ToBRFV infection following HRs was similarly transient and dissociated from disease symptom manifestations on fruits. Interestingly, ToBRFV stable infection of a pepper cultivar not harboring the L gene was also not associated with disease symptoms on fruits, although ToBRFV was localized in the seed epidermis, parenchyma, and endothelium, which borders the endosperm, indicating that a stable infection of maternal origin of these tissues occurred. Pepper plants with systemic ToBRFV infection could constitute an inoculum source for adjacently grown tomato plants.
Collapse
|
13
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
14
|
Mechrez G, Mani KA, Saha A, Lachman O, Luria N, Molad O, Kotliarevski L, Zelinger E, Smith E, Yaakov N, Stone DS, Reches M, Dombrovsky A. Platform for Active Vaccine Formulation Using a Two-Mode Enhancement Mechanism of Epitope Presentation by Pickering Emulsion. ACS APPLIED BIO MATERIALS 2022; 5:3859-3869. [PMID: 35913405 PMCID: PMC9382630 DOI: 10.1021/acsabm.2c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of epitope-based vaccination (subunit vaccines) is tightly correlated with heterogeneity and the high density of epitope presentation, which maximizes the potential antigenic determinants. Here, we developed a two-mode platform for intensifying the epitope presentation of subunit vaccines. The two-mode epitope presentation enhancement includes a covalent attachment of high concentrations of SARS-CoV-2-S1 peptide epitope to the surface of virus-like-particles (VLPs) and the subsequent assembly of VLP/epitope conjugates on the oil droplet surface at an oil/water interface of an emulsion as Pickering stabilizers. The resultant emulsions were stable for weeks in ambient conditions, and our platform was challenged using the epitope of the SARS-CoV-2-S1 peptide that served as a model epitope in this study. In vivo assays showed that the αSARS-CoV-2-S1 immunoglobulin G (IgG) titers of the studied mouse antisera, developed against the SARS-CoV-2-S1 peptide under different epitope preparation conditions, showed an order of magnitude higher IgG titers in the studied VLP-based emulsions than epitopes dissolved in water and epitopes administered with an adjuvant, thereby confirming the efficacy of the formulation. This VLP-based Pickering emulsion platform is a fully synthetic approach that can be readily applied for vaccine development to a wide range of pathogens.
Collapse
Affiliation(s)
- Guy Mechrez
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Karthik Ananth Mani
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Abhijit Saha
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ori Molad
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Liliya Kotliarevski
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Noga Yaakov
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | | | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
15
|
Chanda B, Gilliard A, Jaiswal N, Ling KS. Comparative Analysis of Host Range, Ability to Infect Tomato Cultivars with Tm-22 Gene, and Real-Time Reverse Transcription PCR Detection of Tomato Brown Rugose Fruit Virus. PLANT DISEASE 2021; 105:3643-3652. [PMID: 34058839 DOI: 10.1094/pdis-05-20-1070-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato (Solanum lycopersicum L.) is one of the most important vegetables in the world. However, tomato is also susceptible to many viral diseases. Several tobamoviruses, including tomato mosaic virus (ToMV), tomato mottle mosaic virus (ToMMV), and tomato brown rugose fruit virus (ToBRFV), are highly contagious pathogens that could result in significant economic losses if not controlled effectively. Tobamoviruses have been managed relatively well with broad adaptation of tomato cultivars with resistance genes. However, emergence of ToBRFV was shown to break down resistance conferred by the common resistance genes, resulting in serious outbreaks in many countries in Asia, Europe, and North America. The objective of this study was to conduct a comparative analysis of biological properties, including host range and disease resistance of ToMV, ToMMV, and ToBRFV. Results showed that despite many similarities in the host range, there were some unique host plant responses for each of the three viruses. In a comparative evaluation of disease resistance using the same tomato cultivars with or without Tm-22 gene, there was a striking difference in responses from tomato plants with Tm-22 gene inoculated with ToBRFV, ToMV, or ToMMV. Whereas these test plants were resistant to ToMV or ToMMV infection, all test plants were susceptible to ToBRFV. Further, for ToBRFV detection, a sensitive and reliable multiplex real-time reverse transcription (RT)-PCR assay using TaqMan probe with an internal 18S rRNA control was also developed. With simple modifications to RNA extraction and seed soaking, real-time RT-PCR could consistently detect the virus in single infested seed in varied levels of contamination, suggesting its usefulness for seed health assay.
Collapse
Affiliation(s)
- Bidisha Chanda
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Andrea Gilliard
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Namrata Jaiswal
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| | - Kai-Shu Ling
- U.S. Vegetable Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Charleston, SC 29414
| |
Collapse
|
16
|
Horvitz D, Milrot E, Luria N, Makdasi E, Beth-Din A, Glinert I, Dombrovsky A, Laskar O. Nanodissection of Selected Viral Particles by Scanning Transmission Electron Microscopy/Focused Ion Beam for Genetic Identification. Anal Chem 2021; 93:13126-13133. [PMID: 34551252 DOI: 10.1021/acs.analchem.1c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents the development of a new correlative workflow to bridge the gap between electron microscopy imaging and genetic analysis of viruses. The workflow enables the assignment of genetic information to a specific biological entity by harnessing the nanodissection capability of focused ion beam (FIB). This correlative workflow is based on scanning transmission electron microscopy (STEM) and FIB followed by a polymerase chain reaction (PCR). For this purpose, we studied the tomato brown rugose fruit virus (ToBRFV) and the adenovirus that have significant impacts on plant integrity and human health, respectively. STEM imaging was used for the identification and localization of virus particles on a transmission electron microscopy (TEM) grid followed by FIB milling of the desired region of interest. The final-milled product was subjected to genetic analysis by the PCR. The results prove that the FIB-milling process maintains the integrity of the genetic material as confirmed by the PCR. We demonstrate the identification of RNA and DNA viruses extracted from a few micrometers of an FIB-milled TEM grid. This workflow enables the genetic analysis of specifically imaged viral particles directly from heterogeneous clinical samples. In addition to viral diagnostics, the ability to isolate and to genetically identify specific submicrometer structures may prove valuable in additional fields, including subcellular organelle and granule research.
Collapse
Affiliation(s)
- Dror Horvitz
- Electron Microscopy, Thermo Fisher Israel Ltd., HaYarden 1 street, Airport City 7019900, Israel
| | - Elad Milrot
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Neta Luria
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Efi Makdasi
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology, ARO, The Volcani Center, Rishon Lezion 50250, Israel
| | - Orly Laskar
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O.B 19, Ness Ziona 74100, Israel
| |
Collapse
|
17
|
Hak H, Spiegelman Z. The Tomato Brown Rugose Fruit Virus Movement Protein Overcomes Tm-22 Resistance in Tomato While Attenuating Viral Transport. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1024-1032. [PMID: 33970669 DOI: 10.1094/mpmi-01-21-0023-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato brown rugose fruit virus is a new virus species in the Tobamovirus genus, causing substantial damage to tomato crops. Reports of recent tomato brown rugose fruit virus (ToBRFV) outbreaks from around the world indicate an emerging global epidemic. ToBRFV overcomes all tobamovirus resistances in tomato, including the durable Tm-22 resistance gene, which had been effective against multiple tobamoviruses. Here, we show that the ToBRFV movement protein (MPToBRFV) enables the virus to evade Tm-22 resistance. Transient expression of MPToBRFV failed to activate the Tm-22 resistance response. Replacement of the original MP sequence of tomato mosaic virus (ToMV) with MPToBRFV enabled this recombinant virus to infect Tm-22-resistant plants. Using hybrid protein analysis, we show that the elements required to evade Tm-22 are located between MPToBRFV amino acids 1 and 216 and not the C terminus, as previously assumed. Analysis of ToBRFV systemic infection in tomato revealed that ToBRFV spreads more slowly compared with ToMV. Interestingly, replacement of tobacco mosaic virus (TMV) and ToMV MPs with MPToBRFV caused an attenuation of systemic infection of both viruses. Cell-to-cell movement analysis showed that MPToBRFV moves less effectively compared with the TMV MP (MPTMV). These findings suggest that overcoming Tm-22 is associated with attenuated MP function. This may explain the high durability of Tm-22 resistance, which had remained unbroken for over 60 years.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
18
|
Alon DM, Hak H, Bornstein M, Pines G, Spiegelman Z. Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a. PLANTS (BASEL, SWITZERLAND) 2021; 10:1256. [PMID: 34205558 PMCID: PMC8234260 DOI: 10.3390/plants10061256] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15-30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.
Collapse
Affiliation(s)
- Dan Mark Alon
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Menachem Bornstein
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Gur Pines
- Department of Entomology, Agricultural Research Organization—the Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Ziv Spiegelman
- The Shmunis School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
19
|
Special Issue: "Plant Virus Epidemiology". PLANTS 2021; 10:plants10061188. [PMID: 34207973 PMCID: PMC8230620 DOI: 10.3390/plants10061188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
|
20
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
21
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
22
|
Klap C, Luria N, Smith E, Hadad L, Bakelman E, Sela N, Belausov E, Lachman O, Leibman D, Dombrovsky A. Tomato Brown Rugose Fruit Virus Contributes to Enhanced Pepino Mosaic Virus Titers in Tomato Plants. Viruses 2020; 12:v12080879. [PMID: 32796777 PMCID: PMC7472245 DOI: 10.3390/v12080879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The tobamovirus tomato brown rugose fruit virus (ToBRFV), a major threat to tomato production worldwide, has recently been documented in mixed infections with the potexvirus pepino mosaic virus (PepMV) CH2 strain in traded tomatoes in Israel. A study of greenhouse tomato plants in Israel revealed severe new viral disease symptoms including open unripe fruits and yellow patched leaves. PepMV was only detected in mixed infections with ToBRFV in all 104 tested sites, using serological and molecular analyses. Six PepMV isolates were identified, all had predicted amino acids characteristic of CH2 mild strains excluding an isoleucine at amino acid position 995 of the replicase. High-throughput sequencing of viral RNA extracted from four selected symptomatic plants showed solely the ToBRFV and PepMV, with total aligned read ratios of 40.61% and 11.73%, respectively, indicating prevalence of the viruses. Analyses of interactions between the co-infecting viruses by sequential and mixed viral inoculations of tomato plants, at various temperatures, showed a prominent increase in PepMV titers in ToBRFV pre-inoculated plants and in mixed-infected plants at 18–25 °C, compared to PepMV-single inoculations, as analyzed by Western blot and quantitative RT-PCR tests. These results suggest that Israeli mild PepMV isolate infections, preceded by ToBRFV, could induce symptoms characteristic of PepMV aggressive strains.
Collapse
Affiliation(s)
- Chen Klap
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Lior Hadad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Elena Bakelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel;
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel; (C.K.); (N.L.); (E.S.); (L.H.); (E.B.); (N.S.); (O.L.); (D.L.)
- Correspondence: ; Tel.: +972-3-968-3579; Fax: +972-3-968-6543
| |
Collapse
|