Yang X, Lai JL, Zhang Y, Luo XG. Toxicity analysis of TNT to alfalfa's mineral nutrition and secondary metabolism.
PLANT CELL REPORTS 2022;
41:1273-1284. [PMID:
35305132 DOI:
10.1007/s00299-022-02856-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Alfalfa has the ability to degrade TNT. TNT exposure caused root disruption of mineral nutrient metabolism. The exposure of TNT imbalanced basal cell energy metabolism. The mechanism of 2,4,6-trinitrotoluene (TNT) toxicity effects was analyzed in alfalfa (Medicago sativa L.) seedlings by examining the mineral nutrition and secondary metabolism of the plant roots. Exposure to 25-100 mg·L-1 TNT in a hydroponic solution for 72 h resulted in a TNT absorption rate of 26.8-63.0%. The contents of S, K, and B in root mineral nutrition metabolism increased significantly by 1.70-5.46 times, 1.38-4.01 times, and 1.40-4.03 times, respectively, after TNT exposure. Non-targeted metabolomics analysis of the roots identified 189 significantly upregulated metabolites and 420 significantly downregulated metabolites. The altered metabolites were primarily lipids and lipid-like molecules, and the most significant enrichment pathways were alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. TNT itself was transformed in the root system into several intermediate products, including 4-hydroxylamino-2,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2-hydroxylamino-4,6-dinitrotoluene, 2,4',6,6'-tetranitro-2',4-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, and 2,4-dinitrotoluene. Overall, TNT exposure disturbed the mineral metabolism balance, and significantly interfered with basic plant metabolism.
Collapse