1
|
Chen T, Xu T, Wang J, Zhang T, Yang J, Feng L, Song T, Yang J, Wu Y. Transcriptomic and free monoterpene analyses of aroma reveal that isopentenyl diphosphate isomerase inhibits monoterpene biosynthesis in grape (Vitis vinifera L.). BMC PLANT BIOLOGY 2024; 24:595. [PMID: 38914931 PMCID: PMC11197285 DOI: 10.1186/s12870-024-05306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.
Collapse
Affiliation(s)
- Tianchi Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yueyan Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
2
|
Lazaridi E, Kapazoglou A, Gerakari M, Kleftogianni K, Passa K, Sarri E, Papasotiropoulos V, Tani E, Bebeli PJ. Crop Landraces and Indigenous Varieties: A Valuable Source of Genes for Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:758. [PMID: 38592762 PMCID: PMC10975389 DOI: 10.3390/plants13060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Landraces and indigenous varieties comprise valuable sources of crop species diversity. Their utilization in plant breeding may lead to increased yield and enhanced quality traits, as well as resilience to various abiotic and biotic stresses. Recently, new approaches based on the rapid advancement of genomic technologies such as deciphering of pangenomes, multi-omics tools, marker-assisted selection (MAS), genome-wide association studies (GWAS), and CRISPR/Cas9 gene editing greatly facilitated the exploitation of landraces in modern plant breeding. In this paper, we present a comprehensive overview of the implementation of new genomic technologies and highlight their importance in pinpointing the genetic basis of desirable traits in landraces and indigenous varieties of annual, perennial herbaceous, and woody crop species cultivated in the Mediterranean region. The need for further employment of advanced -omic technologies to unravel the full potential of landraces and indigenous varieties underutilized genetic diversity is also indicated. Ultimately, the large amount of genomic data emerging from the investigation of landraces and indigenous varieties reveals their potential as a source of valuable genes and traits for breeding. The role of landraces and indigenous varieties in mitigating the ongoing risks posed by climate change in agriculture and food security is also highlighted.
Collapse
Affiliation(s)
- Efstathia Lazaridi
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Konstantina Kleftogianni
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Kondylia Passa
- Department of Agriculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Vasileios Papasotiropoulos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.L.); (M.G.); (K.K.); (E.S.); (V.P.); (E.T.)
| |
Collapse
|
3
|
Michael K, Andreou C, Markou A, Christoforou M, Nikoloudakis N. A Novel Sorbitol-Based Flow Cytometry Buffer Is Effective for Genome Size Estimation across a Cypriot Grapevine Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:733. [PMID: 38475579 DOI: 10.3390/plants13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Flow cytometry (FCM) is a widely used technique to study genome size (C-value), but recalcitrant metabolites in grapevines often hinder its efficiency in grapevine research. The aim of the present study was (i) to develop a novel buffer tailormade for the nuclei isolation of grapevines and (ii) to characterize a Cypriot germplasm collection based on C-values. A local cultivar "Xinisteri" was used as a pilot test to evaluate a Sorbitol-based buffer, while sprouting, young, and fully matured leaves were examined to evaluate the developmental parameter. The novel Sorbitol buffer was shown to have a coefficient of variation (CV) of 4.06%, indicating improved properties compared to other commonly used FCM buffers [WPB (7.69%), LB01 (6.69%), and LB (7.13%), respectively]. In addition, a significant variation in genome size between genotypes was found in a comprehensive application with 24 grape varieties. Nucleic content (2C) ranged from 0.577/1C pg for the "Assyrtiko" cultivar up to 0.597/1C pg for the "Spourtiko" cultivar, revealing a 17.6/1C Mbp difference. The lowest coefficient of variation (CV) across all entries was found in the variety "Ofthalmo" (2.29%), while the highest was observed in "Pinot Noir" (3.44%). Anova analysis revealed several distinct clusters, showing that in several cases, C-values can be used as a simple method to distinguish grapevine cultivars.
Collapse
Affiliation(s)
- Kyriakos Michael
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Constantina Andreou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Anastasia Markou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Michalakis Christoforou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
4
|
Charalambous I, Ioannou N, Kyratzis AC, Kourtellarides D, Hagidimitriou M, Nikoloudakis N. Genome Size Variation across a Cypriot Fabeae Tribe Germplasm Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1469. [PMID: 37050095 PMCID: PMC10096862 DOI: 10.3390/plants12071469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
DNA content is an important trait linked to the evolutionary routes of taxa and often connected to speciation. In the present study, we studied C-values variation across the Cypriot Fabeae gene pool. Several hundred plants (Vicia spp., Lens spp., Pisum spp.) were sampled across Cyprus. Accurate estimates were established by flow cytometry and propidium iodine staining for 155 discrete populations/accessions. A ten-fold variation was detected across lineages with 1C DNA content varying from 1.584 pg for V. cretica (ARI02420) to 13.983 pg for V. faba (ARI00187). In general, flow cytometry was precise for the characterization of species, even though there were instances of genome overlapping across taxa. Most analyses in the current work refer to species that have not been characterized before by flow cytometry (or any other DNA content estimation method). Still, a correlation to C-values previously reported in Kew Plant DNA C-values database was attempted. A high degree of correlation except for V. dalmatica was established. The evaluation of genome size trait in relation with the Fabeae phylogeny, revealed that Pisum and Lens genera were rather homogenous, but an astonishing fluctuation was shown for Vicia spp. Moreover, it was established that genome up- or down-scaling was not directly linked to speciation drivers. The genomic size measurements presented here could deliver extra quality control for the identification and characterization of taxa in germplasm collections, particularly in cases where species share morphological characters.
Collapse
Affiliation(s)
- Iliana Charalambous
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus; (I.C.); (N.I.)
| | - Nektaria Ioannou
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus; (I.C.); (N.I.)
| | - Angelos C. Kyratzis
- Vegetable Crop Sector, Agricultural Research Institute-Ministry of Agriculture, Rural Development and Environment, 1516 Nicosia, Cyprus; (A.C.K.); (D.K.)
| | - Dimitrios Kourtellarides
- Vegetable Crop Sector, Agricultural Research Institute-Ministry of Agriculture, Rural Development and Environment, 1516 Nicosia, Cyprus; (A.C.K.); (D.K.)
| | | | - Nikolaos Nikoloudakis
- Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus; (I.C.); (N.I.)
| |
Collapse
|
5
|
Avramidou EV, Masaoutis I, Pitsoli TD, Kapazoglou A, Pikraki M, Trantas EA, Nikolantonakis M, Doulis AG. Analysis of Wine-Producing Vitis vinifera L. Biotypes, Autochthonous to Crete (Greece), Employing Ampelographic and Microsatellite Markers. Life (Basel) 2023; 13:220. [PMID: 36676169 PMCID: PMC9863062 DOI: 10.3390/life13010220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Vitis vinifera ssp. vinifera (domesticated grapevine) includes thousands of cultivars, which are classified according to their main uses, as wines, fresh fruits or dried raisins and sultanas since ancient times. Evidence showed that Crete grapevine cultivars and winemaking date back to 2300 BC. In this study, fifty-one genotypes belonging to seven different traditional Vitis vinifera cultivars, presumed autochthonous to the island of Crete, were selected for their wine-producing potential and classified by 51 ampelographic descriptors. In addition, five genotypes belonging to two non-autochthonous cultivars were included as out-group controls. Subsequently, in order to characterize genetic diversity, establish genetic relationships within and between cultivars and solve accession-labeling problems, genotypes were fingerprinted employing Simple Sequence Repeat (SSR or microsatellite) markers. Four of the autochthonous cultivars namely 'Vidiano', 'Vilana', 'Plyto', and 'Moschato Spinas' are used in the local economy for blanc (white) wine production while the rest, namely 'Kotsifali', 'Liatiko' and 'Mantilari' for Noir (red) wines. The two cultivars employed as out-group were 'Moschato Samou' and 'Moschato Alexandrias': both white wine producers. Ampelography-based clustering grouped the majority of genotypes along cultivar-specific clusters. All three Moschato cultivars formed a distinct clade pointing to the non-autochthonous origin of 'Moschato Spinas'. A total of one hundred and thirteen (113) SSR alleles were amplified from thirteen (13) SSR loci, with an average number of alleles per locus equal to 10.23 revealing ample genetic polymorphism. The cumulative probability of identity was also quite high (3.389 × 10-16). The overall observed heterozygosity was 0.837 while for twenty-nine of the examined genotypes, at least one private SSR allele was detected. The majority of genotypes were grouped in cultivar-specific clusters. The results of this paper pave the way for the certification and registration of clones of some of the most important wine-producing cultivars in Crete.
Collapse
Affiliation(s)
- Evangelia V. Avramidou
- Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Institute of Mediterranean Forest Ecosystems, Terma Alkmanos, Ilissia, 11528 Athens, Greece
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Laboratory of Plant Biotechnology & Genomic Resources, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Kastorias 32A, 71307 Heraklion, Greece
| | | | - Theodora D. Pitsoli
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Department of Grapevine, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Lykovrissi, 14123 Athens, Greece
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Department of Grapevine, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Lykovrissi, 14123 Athens, Greece
| | - Maria Pikraki
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Laboratory of Plant Biotechnology & Genomic Resources, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Kastorias 32A, 71307 Heraklion, Greece
| | - Emmanouil A. Trantas
- Department of Agriculture, Laboratory of Biological and Biotechnological Applications, Hellenic Mediterranean University, 73133 Heraklion, Greece
| | - Michael Nikolantonakis
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Laboratory of Plant Biotechnology & Genomic Resources, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Kastorias 32A, 71307 Heraklion, Greece
| | - Andreas G. Doulis
- Institute of Olive Tree, Subtropical Plants and Viticulture (IOSV), Laboratory of Plant Biotechnology & Genomic Resources, Hellenic Agricultural Organization ELGO “DIMITRA” (ex. NAGREF), Kastorias 32A, 71307 Heraklion, Greece
| |
Collapse
|
6
|
Nasiri A, Taheri-Garavand A, Fanourakis D, Zhang YD, Nikoloudakis N. Automated Grapevine Cultivar Identification via Leaf Imaging and Deep Convolutional Neural Networks: A Proof-of-Concept Study Employing Primary Iranian Varieties. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081628. [PMID: 34451673 PMCID: PMC8399703 DOI: 10.3390/plants10081628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
Extending over millennia, grapevine cultivation encompasses several thousand cultivars. Cultivar (cultivated variety) identification is traditionally dealt by ampelography, requiring repeated observations by experts along the growth cycle of fruiting plants. For on-time evaluations, molecular genetics have been successfully performed, though in many instances, they are limited by the lack of referable data or the cost element. This paper presents a convolutional neural network (CNN) framework for automatic identification of grapevine cultivar by using leaf images in the visible spectrum (400-700 nm). The VGG16 architecture was modified by a global average pooling layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual features of diverse grapevine varieties, and recognizing them according to these features was conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the uncertainty and predictive efficiency of the CNN model. The modified deep learning model was able to recognize different grapevine varieties with an average classification accuracy of over 99%. The obtained model offers a rapid, low-cost and high-throughput grapevine cultivar identification. The ambition of the obtained tool is not to substitute but complement ampelography and quantitative genetics, and in this way, assist cultivar identification services.
Collapse
Affiliation(s)
- Amin Nasiri
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA;
| | - Amin Taheri-Garavand
- Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad P.O. Box 465, Iran
- Correspondence:
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Greece;
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK;
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol CY-3603, Cyprus;
| |
Collapse
|
7
|
Ebert AW, Engels JMM. Plant Biodiversity and Genetic Resources Matter! PLANTS (BASEL, SWITZERLAND) 2020; 9:E1706. [PMID: 33291549 PMCID: PMC7761872 DOI: 10.3390/plants9121706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Plant biodiversity is the foundation of our present-day food supply (including functional food and medicine) and offers humankind multiple other benefits in terms of ecosystem functions and resilience to climate change, as well as other perturbations. This Special Issue on 'Plant Biodiversity and Genetic Resources' comprises 32 papers covering a wide array of aspects from the definition and identification of hotspots of wild and domesticated plant biodiversity to the specifics of conservation of genetic resources of crop genepools, including breeding and research materials, landraces and crop wild relatives which collectively are the pillars of modern plant breeding, as well as of localized breeding efforts by farmers and farming communities. The integration of genomics and phenomics into germplasm and genebank management enhances the value of crop germplasm conserved ex situ, and is likely to increase its utilization in plant breeding, but presents major challenges for data management and the sharing of this information with potential users. Furthermore, also a better integration of in situ and ex situ conservation efforts will contribute to a more effective conservation and certainly to a more sustainable and efficient utilization. Other aspects such as policy, access and benefit-sharing that directly impact the use of plant biodiversity and genetic resources, as well as balanced nutrition and enhanced resilience of production systems that depend on their increased use, are also being treated. The editorial concludes with six key messages on plant biodiversity, genetic erosion, genetic resources and plant breeding, agricultural diversification, conservation of agrobiodiversity, and the evolving role and importance of genebanks.
Collapse
Affiliation(s)
- Andreas W. Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| | | |
Collapse
|