1
|
Compart J, Fettke J. Starch phosphorylation - A new perspective: A review. Int J Biol Macromol 2025; 298:139889. [PMID: 39818391 DOI: 10.1016/j.ijbiomac.2025.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The phosphorylation of the storage carbohydrates, starch and glycogen, is a process that is fundamental to their physicochemical properties and their turnover. Therefore, the interest utilising phosphorylation as a biotechnological tool to customize polysaccharides has risen permanently. Today, the phosphoesterification of both carbohydrate forms is much better understood. In recent years, important new insights have been gained into the molecular mechanism of starch phosphoesterification and its effects. In the following, the current state of knowledge on starch phosphorylation is briefly summarized. In addition, protein structure predictions for GWD are presented and considered for the first time in the context of recently published analyses of starch phosphorylation, which have opened up novel perspectives on this process. Therefore, we focus on a detailed discussion of the molecular events that occur at the surface of starch granules and enable a revised and in-depth understanding of starch granule phosphorylation.
Collapse
Affiliation(s)
- Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany.
| |
Collapse
|
2
|
Laffargue T, Moulis C, Remaud-Simeon M. Phosphorylated polysaccharides: Applications, natural abundance, and new-to-nature structures generated by chemical and enzymatic functionalization. Biotechnol Adv 2023; 65:108140. [PMID: 36958536 DOI: 10.1016/j.biotechadv.2023.108140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polysaccharides are foreseen as serious candidates for the future generation of polymers, as they are biosourced and biodegradable materials. Their functionalisation is an attractive way to modify their properties, thereby increasing their range of applications. Introduction of phosphate groups in polysaccharide chains for the stimulation of the immune system was first described in the nineteen seventies. Since then, the use of phosphorylated polysaccharides has been proposed in various domains, such as healthcare, water treatment, cosmetic, biomaterials, etc. These alternative usages capitalize on newly acquired physico-chemical or biological properties, leading to materials as diverse as flame-resistant agents or drug delivery systems. Phosphorylated polysaccharides are found in Nature and need to be extracted to assess their biological potential. However, they are not abundant, often present complex backbones hard to characterize, and most of them have a low phosphate content. These drawbacks have pushed forward the development of chemical phosphorylation employing a wide variety of phosphorylating agents to obtain polysaccharides with a large range of phosphate content. Chemical phosphorylation requires the use of harsh conditions and toxic, petroleum-based solvents, which hinders their exploitation in the food and health industry. Over the last 20 years, although enzymes are regiospecific catalysts that work in aqueous and mild conditions, enzymatic phosphorylation has been little investigated. To date, only three families of enzymes have been used for the in vitro phosphorylation of polysaccharides. Considering the number of unresolved metabolic pathways leading to phosphorylated polysaccharides, the huge diversity of kinase sequences, and the recent progress in protein engineering one can envision native and engineered kinases as promising tools for polysaccharide phosphorylation.
Collapse
Affiliation(s)
- Thibaud Laffargue
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Claire Moulis
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Magali Remaud-Simeon
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France.
| |
Collapse
|
3
|
Xiao Y, Li Y, Ouyang L, Yin A, Xu B, Zhang L, Chen J, Liu J. A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1036719. [PMID: 36438126 PMCID: PMC9691770 DOI: 10.3389/fpls.2022.1036719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch degradation-related enzyme genes is incompletely discovered. Here, we describe a banana APETALA2 transcription factor (MaAP2a) identified as a transcriptional repressor with its powerful transcriptional inhibitory activity. The transcriptional level of MaAP2a gradually decreased with the transition of banana fruit ripening, suggesting a passive role of MaAP2a in banana fruit ripening. Moreover, MaAP2a is a classic nucleoprotein and encompasses transcriptional repressor domain (EAR, LxLxLx). More specifically, protein-DNA interaction assays found that MaAP2a repressed the expression of 15 starch degradation-related genes comprising MaGWD1, MaPWD1, MaSEX4, MaLSF1, MaBAM1-MaBAM3, MaAMY2B/2C/3A/3C, MaMEX1/2, and MapGlcT2-1/2-2 via binding to the GCC-box or AT-rich motif of their promoters. Overall, these results reveal an original MaAP2a-mediated negative regulatory network involved in banana postharvest starch breakdown, which advances our cognition on banana fruit ripening and offers additional reference values for banana varietal improvement.
Collapse
Affiliation(s)
- Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Liu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
4
|
Carlsen FM, Johansen IE, Yang Z, Liu Y, Westberg IN, Kieu NP, Jørgensen B, Lenman M, Andreasson E, Nielsen KL, Blennow A, Petersen BL. Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA Efficiency Design by Utilizing Protoplast (Research). Front Genome Ed 2022; 3:795644. [PMID: 35128523 PMCID: PMC8811252 DOI: 10.3389/fgeed.2021.795644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3–2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6–10 gRNAs were designed to target regions comprising the 5′ and the 3′ end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP’s targeting the 5′ end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3′ end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3′ end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.
Collapse
Affiliation(s)
- Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Kartoffel Mel Centralen Amba, Brande, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Liu
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ida Nøhr Westberg
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bent Larsen Petersen,
| |
Collapse
|
5
|
Wang Z, Wei K, Xiong M, Wang J, Zhang C, Fan X, Huang L, Zhao D, Liu Q, Li Q. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2606-2618. [PMID: 34416068 PMCID: PMC8633486 DOI: 10.1111/pbi.13686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
The source-sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water-Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf-dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down-regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Jin‐Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Chang‐Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Xiao‐Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Li‐Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Dong‐Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qiao‐Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qian‐Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|