1
|
Khan MA, Khan MA, Siddiqui S, Misra A, Yadav K, Srivastava A, Trivedi A, Husain I, Ahmad R. Phytoestrogens as potential anti-osteoporosis nutraceuticals: Major sources and mechanism(s) of action. J Steroid Biochem Mol Biol 2025; 251:106740. [PMID: 40139537 DOI: 10.1016/j.jsbmb.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
By 2050, the global aging population is predicted to reach 1.5 billion, highlighting the need to enhance the quality of life of the elderly population. Osteoporotic fractures are projected to affect one in three women and one in five men over age 50. Initial treatments for osteoporosis in postmenopausal women include antiresorptive agents such as bisphosphonates, strontium ranelate, estrogen replacement therapy (ERT) and selective estrogen receptor modulators (SERMs). However, these do not rebuild bone, limiting their effectiveness. Denosumab, an FDA-approved antiresorptive monoclonal antibody, also has drawbacks including high costs, biannual subcutaneous injections, slow healing, impaired bone growth and side effects like eczema, flatulence, cellulitis, osteonecrosis of the jaw (ONJ) and an increased risk of spinal fractures after discontinuation of treatment. Nutraceuticals, particularly phytoestrogens, are gaining attention for their health benefits and safety in osteoporosis prevention, management and treatment. Phytoestrogens are plant metabolites similar to mammalian estrogens and include isoflavones, coumestans, lignans, stilbenes, and flavonoids. They interact with estrogen receptor isoforms ERα and ERβ, acting as agonists or antagonists based on concentration and bioavailability. Their tissue-selective activities are particularly significant: anti-estrogenic effects in reproductive tissues may lower the risk of hormone-related cancers (such as ovarian, uterine, breast and prostate), while estrogenic effects on bone could contribute to the preservation of bone mineral density.Phytoestrogens are, thus, used in managing breast and prostate cancers, cardiovascular diseases, menopause and osteoporosis. The present review focuses on the botanical origin, classification, sources and mechanism(s) of action of major phytoestrogens, their potential in prevention and management of osteoporosis and the requirement for additional clinical trials to achieve more definitive outcomes in order to confirm their efficacy and dosage safety.
Collapse
Affiliation(s)
- Mohammad Amir Khan
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow, UP 226003, India
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow, UP 226003, India
| | - Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Ishrat Husain
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow, UP 226003, India.
| |
Collapse
|
2
|
Wang K, Dang X, Wang Y, Yang Q, Zhang T, Yang P, Yuan L, Xu R, Dang Y, Nan Y. Qianggu concentrate: unlocking bone protection power via antioxidative SIRT1/NRF2/HO-1 pathways in type 2 diabetic osteoporosis. Front Pharmacol 2024; 15:1426767. [PMID: 39175549 PMCID: PMC11338786 DOI: 10.3389/fphar.2024.1426767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Background Qianggu Concentrate (QGHJ), a traditional Chinese medicine, is extensively used to treat Type 2 Diabetic Osteoporosis (T2DOP). Despite its widespread use, research on its therapeutic mechanisms within T2DOP is notably scarce. Objective To explore QGHJ's osteoprotection in T2DOP rats and BMSCs, focusing on the antioxidant activation of SIRT1/NRF2/HO-1 and NRF2 nuclear migration. Methods QGHJ constituent analysis was performed using UPLC-HRMS. Safety, bone-health efficacy, and glucose metabolic effects in T2DOP rats were evaluated via general condition assessments, biomarker profiling, micro-CT, biomechanics, staining methods, and ELISA, supplemented by RT-qPCR and Western blot. BMSCs' responses to QGHJ under oxidative stress, including viability, apoptosis, and osteogenic differentiation, were determined using CCK-8, flow cytometry, ALP/ARS staining, and molecular techniques. The modulation of the SIRT1/NRF2/HO-1 pathway by QGHJ was explored through oxidative stress biomarkers, immunofluorescence, and Western blot assays. Results UPLC-HRMS identified flavonoids, monoterpenes, and isoflavones as QGHJ's key compounds. In vivo, QGHJ proved safe and effective for T2DOP rats, enhancing bone mineral density, microenvironment, and biomechanical properties without impairing vital organs. It modulated bone markers PINP, TRACP 5b, RUNX2 and PPARγ, favoring bone anabolism and reduced catabolism, thus optimizing bone integrity. QGHJ also regulated glycemia and mitigated insulin resistance. In vitro, it preserved BMSCs' viability amidst oxidative stress, curbed apoptosis, and fostered osteogenesis with regulated RUNX2/PPARγ expression. Mechanistic insights revealed QGHJ activated the SIRT1/NRF2/HO-1 pathway, augmented NRF2 nuclear translocation, and enhanced the antioxidative response, promoting bone health under stress. Conclusion In T2DOP rat and BMSCs oxidative stress models, QGHJ's bone protection is anchored in its antioxidative mechanisms via the SIRT1/NRF2/HO-1 pathway activation and NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Kaili Wang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiang Dang
- Department of Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine, Affiliated with Ningxia Medical University, Yinchuan, China
| | - Yanyan Wang
- Department of Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine, Affiliated with Ningxia Medical University, Yinchuan, China
| | - Qing Yang
- Department of Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine, Affiliated with Ningxia Medical University, Yinchuan, China
| | - Tingting Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Peng Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Rongming Xu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuqi Dang
- Department of Endocrinology, Yinchuan Hospital of Traditional Chinese Medicine, Affiliated with Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Chen J, Tan X, Guo G, Wang P, Zhang H, Lv S, Xu H, Hou D. Cloning and Expression Analysis of Key Enzyme Gene CoGPPS Involved in Iridoid Glycoside Synthesis in Cornus officinalis. DNA Cell Biol 2024; 43:125-131. [PMID: 38350140 DOI: 10.1089/dna.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.
Collapse
Affiliation(s)
- Jiaxi Chen
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Xinjie Tan
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Guangyang Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Panpan Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center for Evaluation and Innovative Utilization of Homology of Medicine and Food, Luoyang, China
| |
Collapse
|
4
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Anti-Osteoporotic Effect of Morroniside on Osteoblast and Osteoclast Differentiation In Vitro and Ovariectomized Mice In Vivo. Int J Mol Sci 2021; 22:ijms221910642. [PMID: 34638983 PMCID: PMC8508973 DOI: 10.3390/ijms221910642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.
Collapse
|
6
|
Gao X, Liu Y, An Z, Ni J. Active Components and Pharmacological Effects of Cornus officinalis: Literature Review. Front Pharmacol 2021; 12:633447. [PMID: 33912050 PMCID: PMC8072387 DOI: 10.3389/fphar.2021.633447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cornus officinalis Sieb. et Zucc. (Shanzhuyu), a herb and food plant in east Asia, has the properties of tonifying the liver and kidney, and nourishing the essence according to the theory of traditional Chinese medicine. C. officinalis has been commonly used to treat asthenia diseases, liver, and kidney diseases, and reproductive system diseases since ancient times. The objectives of this article were to review the pharmacological effects and phytochemistry of C. officinalis. We conducted a literature review of the pharmacological effects of C. officinalis by different systems and compared the effects with the traditional usages, discussed the research status and potential blanks to be filled. The experimental studies showed that C. officinalis extract and its active components had various pharmacological effects such as anti-oxidation, anti-apoptosis, anti-inflammation, anti-diabetes, anti-osteoporosis, immunoregulation, neuroprotection, and cardiovascular protection, but clinical studies are still needed to assess whether the reported pharmacological activities have confirmed efficacy.
Collapse
Affiliation(s)
- Xue Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin, China
| | - Zhichao An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Huang F, Guo H, Wei Y, Zhao X, Chen Y, Lin Z, Zhou Y, Sun P. In Silico Network Analysis of Ingredients of Cornus officinalis in Osteoporosis. Med Sci Monit 2021; 27:e929219. [PMID: 33795629 PMCID: PMC8023278 DOI: 10.12659/msm.929219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/10/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cornus officinalis (CO), also known as 'Shanzhuyu', is one of the most common traditional Chinese herbs used against osteoporosis. Although previous studies have found that CO has beneficial effects in alleviating osteoporosis, its mechanisms remain unclear. MATERIAL AND METHODS In this study, we applied system bioinformatic approaches to investigate the possible therapeutic mechanisms of CO against osteoporosis. We collected the active ingredients of CO and their targets from the TCMSP, BATMAN-TCM, and ETCM databases. Next, we obtained the osteoporosis targets from differentially expressed mRNAs from the Gene Expression Omnibus (GEO) gene series (GSE35958). Next, the shared genes of the CO pharmacological targets and osteoporosis-related targets were selected to construct the protein-protein interaction network, based on the results from the STRING database. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out by using the clusterProfiler package in R software. RESULTS In all, there were 58 unique CO compounds and 518 therapeutic targets. Based on the GO and KEGG enrichment results of 98 common genes, we selected the top 25 terms, based on the terms' P values. We found that the anti-osteoporotic effect of CO may mostly involve the regulation of calcium metabolism and reactive oxygen species, and the estrogen signaling pathway and osteoclast differentiation pathway. CONCLUSIONS We found the possible mechanisms of CO in treating osteoporosis may be based on multiple targets and pathways. We also provided a theoretical basis and promising direction for investigating the exact anti-osteoporotic mechanisms of CO.
Collapse
Affiliation(s)
- Feiqi Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Huizhi Guo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yuanbiao Wei
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Xiao Zhao
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Yangsheng Chen
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Zhan Lin
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Yanhui Zhou
- Department of Bone Orthopedics, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|