1
|
Yaeno T, Wahara M, Nagano M, Wanezaki H, Toda H, Inoue H, Eishima A, Nishiguchi M, Hisano H, Kobayashi K, Sato K, Yamaoka N. RACE1, a Japanese Blumeria graminis f. sp. hordei isolate, is capable of overcoming partially mlo-mediated penetration resistance in barley in an allele-specific manner. PLoS One 2021; 16:e0256574. [PMID: 34424930 PMCID: PMC8382181 DOI: 10.1371/journal.pone.0256574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Loss-of-function mutation of the MILDEW RESISTANCE LOCUS O (Mlo) gene confers durable and broad-spectrum resistance to powdery mildew fungi in various plants, including barley. In combination with the intracellular nucleotide-binding domain and leucine-rich repeat receptor (NLR) genes, which confer the race-specific resistance, the mlo alleles have long been used in barley breeding as genetic resources that confer robust non-race-specific resistance. However, a Japanese Blumeria graminis f. sp. hordei isolate, RACE1, has been reported to have the potential to overcome partially the mlo-mediated penetration resistance, although this is yet uncertain because the putative effects of NLR genes in the tested accessions have not been ruled out. In this study, we examined the reproducibility of the earlier report and found that the infectious ability of RACE1, which partially overcomes the mlo-mediated resistance, is only exerted in the absence of NLR genes recognizing RACE1. Furthermore, using the transient-induced gene silencing technique, we demonstrated that RACE1 can partially overcome the resistance in the host cells with suppressed MLO expression but not in plants possessing the null mutant allele mlo-5.
Collapse
Affiliation(s)
- Takashi Yaeno
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
- Research Unit for Citromics, Ehime University, Tarumi, Matsuyama, Ehime, Japan
| | - Miki Wahara
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Mai Nagano
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hikaru Wanezaki
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hirotaka Toda
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Hiroshi Inoue
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | - Ayaka Eishima
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| | | | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Okayama, Japan
| | - Kappei Kobayashi
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
- Research Unit for Citromics, Ehime University, Tarumi, Matsuyama, Ehime, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Okayama, Japan
| | - Naoto Yamaoka
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Japan
| |
Collapse
|
2
|
Ueda K, Nakajima Y, Inoue H, Kobayashi K, Nishiuchi T, Kimura M, Yaeno T. Nicotinamide Mononucleotide Potentiates Resistance to Biotrophic Invasion of Fungal Pathogens in Barley. Int J Mol Sci 2021; 22:ijms22052696. [PMID: 33800043 PMCID: PMC7962114 DOI: 10.3390/ijms22052696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.
Collapse
Affiliation(s)
- Kana Ueda
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Yuichi Nakajima
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Hiroshi Inoue
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Kappei Kobayashi
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
| | - Takumi Nishiuchi
- Institution for Gene Research, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan;
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; (Y.N.); (M.K.)
| | - Takashi Yaeno
- Department of Agriculture, Ehime University, Tarumi, Matsuyama, Ehime 790-8566, Japan; (K.U.); (H.I.); (K.K.)
- Correspondence:
| |
Collapse
|