1
|
Faisal AF, Mustafa YF. The Multifaceted Chemistry of Chili Peppers: A Biodiversity Treasure for Nutrition and Biomedicine. Chem Biodivers 2025:e202402690. [PMID: 39898594 DOI: 10.1002/cbdv.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
Due to its biodiversity, traditional medicine has been recognized worldwide for centuries and continues to affect the development of complementary and alternative therapies. A wide variety of spices, herbs, and trees are known for their curative effects. Chili pepper (Ch-p), a spice-utilizing fruit, is rich in natural medicinally bioactive compounds, such as flavonoids, capsaicinoids, and many other phytochemicals and phytonutrients. Operating in synergy and consortium, these compounds demonstrate their functionality, in comparison to lonely treatment, as active agents in handling many disorders. These may include abnormal coagulation, oxidative stress, obesity, diabetes, inflammation, cancer, and microbe-inducing diseases. Recently, capsaicinoids, particularly capsaicin, have been shown to manage the symptoms of significant viral diseases, including COVID-19. Capsaicin also has the potential to be an effective anesthetic agent and enables Ch-p to be expandedly employed as a topical preparation in relieving pain as well. The phytochemicals of Ch-p are not only beneficial and inexpensive phyto-alternatives in disease management, but they can also be used as scaffolds for the production of novel medicines. The study also substantiates the role of the TRPV1 receptor in the mitigation of chronic diseases in conjunction with capsaicin. Nevertheless, the consumption of Ch-p is the subject of limited medicinal research, necessitating the confirmation of the results from animal studies. The nutritional and biomedical prospection of Ch-p-derived products has been addressed in an accessible format in this artifact, with the potential to precisely enhance and enrich our pharmaceutical industries in the pursuit of human well-being.
Collapse
Affiliation(s)
- Ayman Faris Faisal
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
2
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
3
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Vázquez-Espinosa M, González-de-Peredo AV, Espada-Bellido E, Ferreiro-González M, Barbero GF, Palma M. The effect of ripening on the capsaicinoids composition of Jeromin pepper (Capsicum annuum L.) at two different stages of plant maturity. Food Chem 2023; 399:133979. [DOI: 10.1016/j.foodchem.2022.133979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
5
|
Costa J, Sepúlveda M, Gallardo V, Cayún Y, Santander C, Ruíz A, Reyes M, Santos C, Cornejo P, Lima N, Santos C. Antifungal Potential of Capsaicinoids and Capsinoids from the Capsicum Genus for the Safeguarding of Agrifood Production: Advantages and Limitations for Environmental Health. Microorganisms 2022; 10:microorganisms10122387. [PMID: 36557640 PMCID: PMC9788535 DOI: 10.3390/microorganisms10122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Opportunistic pathogenic fungi arise in agricultural crops as well as in surrounding human daily life. The recent increase in antifungal-resistant strains has created the need for new effective antifungals, particularly those based on plant secondary metabolites, such as capsaicinoids and capsinoids produced by Capsicum species. The use of such natural compounds is well-aligned with the One Health approach, which tries to find an equilibrium among people, animals, and the environment. Considering this, the main objective of the present work is to review the antifungal potential of capsaicinoids and capsinoids, and to evaluate the environmental and health impacts of biofungicides based on these compounds. Overall, capsaicinoids and their analogues can be used to control pathogenic fungi growth in plant crops, as eco-friendly alternatives to pest management, and assist in the conservation and long-term storage of agrifood products. Their application in different stages of the agricultural and food production chains improves food safety, nutritional value, and overcomes antimicrobial resistance, with a lower associated risk to humans, animals, and the environment than that of synthetic fungicides and pesticides. Nevertheless, research on the effect of these compounds on bee-like beneficial insects and the development of new preservatives and packaging materials is still necessary.
Collapse
Affiliation(s)
- Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, AM, Brazil
| | - Marcela Sepúlveda
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Víctor Gallardo
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Yasna Cayún
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Christian Santander
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Environmental Engineering and Biotechnology Group, Faculty of Environmental Science and EULA-Chile Center, Universidad de Concepción, Concepción 4070-411, Chile
| | - Antonieta Ruíz
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Marjorie Reyes
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Carla Santos
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS (Associate Laboratory, Braga/Guimarães), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260-000, Chile
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho (MUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS (Associate Laboratory, Braga/Guimarães), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Correspondence: ; Tel.: +56-452-596-726
| |
Collapse
|
6
|
|