1
|
Sun B, Zhao X, Gao J, Li J, Xin Y, Zhao Y, Liu Z, Feng H, Tan C. Genome-wide identification and expression analysis of the GASA gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 2023; 24:668. [PMID: 37932701 PMCID: PMC10629197 DOI: 10.1186/s12864-023-09773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The Gibberellic Acid-Stimulated Arabidopsis (GASA) gene family is widely involved in the regulation of plant growth, development, and stress response. However, information on the GASA gene family has not been reported in Chinese cabbage (Brassica rapa L. ssp. pekinensis). RESULTS Here, we conducted genome-wide identification and analysis of the GASA genes in Chinese cabbage. In total, 15 GASA genes were identified in the Chinese cabbage genome, and the physicochemical property, subcellular location, and tertiary structure of the corresponding GASA proteins were elucidated. Phylogenetic analysis, conserved motif, and gene structure showed that the GASA proteins were divided into three well-conserved subfamilies. Synteny analysis proposed that the expansion of the GASA genes was influenced mainly by whole-genome duplication (WGD) and transposed duplication (TRD) and that duplication gene pairs were under negative selection. Cis-acting elements of the GASA promoters were involved in plant development, hormonal and stress responses. Expression profile analysis showed that the GASA genes were widely expressed in different tissues of Chinese cabbage, but their expression patterns appeared to diverse. The qRT-PCR analysis of nine GASA genes confirmed that they responded to salt stress, heat stress, and hormonal triggers. CONCLUSIONS Overall, this study provides a theoretical basis for further exploring the important role of the GASA gene family in the functional genome of Chinese cabbage.
Collapse
Affiliation(s)
- Bingxin Sun
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xianlei Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Jiahui Gao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Jie Li
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yue Xin
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yonghui Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
2
|
Identification of the Major Effector StSROs in Potato: A Potential StWRKY- SRO6 Regulatory Pathway Enhances Plant Tolerance to Cadmium Stress. Int J Mol Sci 2022; 23:ijms232214318. [PMID: 36430795 PMCID: PMC9698690 DOI: 10.3390/ijms232214318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
SIMILAR TO RCD-ONE (SRO) family members and transcription factors (TFs) often improve plant antioxidant capacity through interaction and co-regulation and participate in plant resistance to drought and high-salt stress. However, whether SROs are involved in the response to heavy metal stress, especially SRO genes with a specific response and tolerance characteristics to cadmium (Cd) stress, remains unclear. We first identified six SRO genes in the potato genome by PARP and RST domains. Special and conserved StSROs were found, and the spatio temporal tissue-specific expression patterns and co-expression network diagrams of StSROs under the stress of 5 heavy metals were constructed. Second, we identified StSRO6 as a major effector gene (StSRO6-MEG) and StSRO5 as a secondary effector gene (StSRO5-SEG) through a comprehensive analysis. Interestingly, they may hold true for various physiological or stress responses in plants. In addition, using systematic genomics and comparative omics techniques, the key gene StSRO6 that affects the difference in Cd accumulation was discovered, cloned in the low-Cd accumulation "Yunshu 505", and transformed into the yeast mutant ycf1 for overexpression. The results proved that StSRO6 could confer Cd tolerance. Finally, through transient expression and in vitro culture tests, we hypothesized that StSROs 5/6 are regulated by the transcription factor StWRKY6 and mediates the reactive oxygen species (ROS) system to confer Cd tolerance. These findings offer a new perspective for understanding the mechanisms underlying Cd tolerance in plants, and simultaneously provide clues for the development of biological agents for preventing and controlling Cd migration and transformation.
Collapse
|
3
|
Comprehensive Analysis of StSRO Gene Family and Its Expression in Response to Different Abiotic Stresses in Potato. Int J Mol Sci 2022; 23:ijms232113518. [DOI: 10.3390/ijms232113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
As a highly conserved family of plant-specific proteins, SIMILAR-TO-RCD-ONE (SROs) play an essential role in plant growth, development and response to abiotic stresses. In this study, six StSRO genes were identified by searching the PARP, RST and WWE domains based on the genome-wide data of potato database DM v6.1, and they were named StSRO1–6 according to their locations on chromosomes. StSRO genes were comprehensively analyzed using bioinformatics methods. The results showed that six StSRO genes were irregularly distributed on five chromosomes. Phylogenetic analysis showed that 30 SRO genes of four species were distributed in three groups, while StSRO genes were distributed in groups II and III. The promoter sequence of StSRO genes contained many cis-acting elements related to hormones and stress responses. In addition, the expression level of StSRO genes in different tissues of doubled monoploid (DM) potato, as well as under salt, drought stresses and hormone treatments, was analyzed by RNA-seq data from the online database and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Furthermore, the expression level of StSRO genes was analyzed by transcriptome analysis under mild, moderate and severe salt stress. It was concluded that StSRO genes could respond to different abiotic conditions, but their expression level was significantly different. This study lays a foundation for further studies on the biological functions of the StSRO gene family.
Collapse
|
4
|
Comprehensive Analysis of SRO Gene Family in Sesamum indicum (L.) Reveals Its Association with Abiotic Stress Responses. Int J Mol Sci 2021; 22:ijms222313048. [PMID: 34884850 PMCID: PMC8657681 DOI: 10.3390/ijms222313048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
SIMILAR TO RCD-ONEs (SROs) comprise a small plant-specific gene family which play important roles in regulating numerous growth and developmental processes and responses to environmental stresses. However, knowledge of SROs in sesame (Sesamum indicum L.) is limited. In this study, four SRO genes were identified in the sesame genome. Phylogenetic analysis showed that 64 SROs from 10 plant species were divided into two groups (Group I and II). Transcriptome data revealed different expression patterns of SiSROs over various tissues. Expression analysis showed that Group II SROs, especially SiSRO2b, exhibited a stronger response to various abiotic stresses and phytohormones than those in Group I, implying their crucial roles in response to environmental stimulus and hormone signals. In addition, the co-expression network and protein-protein interaction network indicated that SiSROs are associated with a wide range of stress responses. Moreover, transgenic yeast harboring SiSRO2b showed improved tolerance to salt, osmotic and oxidative stress, indicating SiSRO2b could confer multiple tolerances to transgenic yeast. Taken together, this study not only lays a foundation for further functional dissection of the SiSRO gene family, but also provides valuable gene candidates for genetic improvement of abiotic stress tolerance in sesame.
Collapse
|
5
|
Li N, Xu R, Wang B, Wang J, Huang S, Yu Q, Gao J. Genome-Wide Identification and Evolutionary Analysis of the SRO Gene Family in Tomato. Front Genet 2021; 12:753638. [PMID: 34621298 PMCID: PMC8490783 DOI: 10.3389/fgene.2021.753638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
SRO (SIMILAR TO RCD ONE) is a family of plant-specific small molecule proteins that play an important role in plant growth and development and environmental responses. However, SROs still lack systematic characterization in tomato. Based on bioinformatics methods, SRO family genes were identified and characterized from cultivated tomatoes and several wild tomatoes. qRT-PCR was used to study the expression of SRO gene in cultivated tomatoes. Phylogenetic and evolutionary analyses showed that SRO genes in angiosperms share a common ancestor and that the number of SRO family members changed as plants diverged and evolved. Cultivated tomato had six SRO members, five of which still shared some degree of identity with the ancestral SRO genes. Genetic structure and physicochemical properties showed that tomato SRO genes were highly conserved with chromosomal distribution. They could be divided into three groups based on exon-intron structure, and cultivated tomato contained only two of these subclades. A number of hormonal, light and abiotic stress-responsive cis-regulatory elements were identified from the promoter of the tomato SRO gene, and they also interacted with a variety of stress-responsive proteins and microRNAs. RNA-seq analysis showed that SRO genes were widely expressed in different tissues and developmental stages of tomato, with significant tissue-specific features. Expression analysis also showed that SRO genes respond significantly to high temperature and salt stress and mediate the tomato hormone regulatory network. These results provide a theoretical basis for further investigation of the functional expression of tomato SRO genes and provide potential genetic resources for tomato resistance breeding.
Collapse
Affiliation(s)
- Ning Li
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ruiqiang Xu
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Baike Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Juan Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Qinghui Yu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|