1
|
Tang L, Zheng Y, Lu H, Qiu Y, Wang H, Liao H, Xie W. Tissue-specific transcriptomic analysis reveals the molecular mechanisms responsive to cold stress in Poa crymophila, and development of EST-SSR markers linked to cold tolerance candidate genes. BMC PLANT BIOLOGY 2025; 25:360. [PMID: 40102740 PMCID: PMC11921722 DOI: 10.1186/s12870-025-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Poa crymophila is a perennial, cold-tolerant, native grass species, widely distributed in the Qinghai-Tibet Plateau. However, the tissue-specific regulatory mechanisms and key regulatory genes underlying its cold tolerance remain poorly characterized. Therefore, in this study, based on the screening and evaluation of cold tolerance of four Poa species, the cold tolerance mechanism of P. crymophila's roots, stems, and leaves and its cold tolerance candidate genes were investigated through physiological and transcriptomic analyses. RESULTS Results of the present study suggested that the cold tolerance of the four Poa species was in the following order: P. crymophila > P. botryoides > P. pratensis var. anceps > P. pratensis. Cold stress significantly changed the physiological characteristics of roots, stems, and leaves of P. crymophila in this study. In addition, the transcriptome results showed that 4434, 8793, and 14,942 differentially expressed genes (DEGs) were identified in roots, stems, and leaves, respectively; however, 464 DEGs were commonly identified in these three tissues. KEGG enrichment analysis showed that these DEGs were mainly enriched in the phenylpropanoid biosynthesis pathway (roots), photosynthesis pathway (stems and leaves), circadian rhythm-plant pathway (stems and leaves), starch and sucrose metabolism pathway (roots, stems, and leaves), and galactose metabolism pathway (roots, stems, and leaves). A total of 392 candidate genes involved in Ca2+ signaling, ROS scavenging system, hormones, circadian clock, photosynthesis, and transcription factors (TFs) were identified in P. crymophila. Weighted gene co-expression network analysis (WGCNA) identified nine hub genes that may be involved in P. crymophila cold response. A total of 200 candidate gene-based EST-SSRs were developed and characterized. Twenty-nine polymorphic EST-SSRs primers were finally used to study genetic diversity of 40 individuals from four Poa species with different cold tolerance characteristics. UPGMA cluster and STRUCTURE analysis showed that the 40 Poa individuals were clustered into three major groups, individual plant with similar cold tolerance tended to group together. Notably, markers P37 (PcGA2ox3) and P148 (PcERF013) could distinguish P. crymophila from P. pratensis var. anceps, P. pratensis, and P. botryoides. CONCLUSIONS This study provides new insights into the molecular mechanisms underlying the cold tolerance of P. crymophila, and also lays a foundation for molecular marker-assisted selection for cold tolerance improvement in Poa species.
Collapse
Affiliation(s)
- Liuban Tang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huanhuan Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yongsen Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huizhi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haoqin Liao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
2
|
Xiong Y, Li D, Liu T, Xiong Y, Yu Q, Lei X, Zhao J, Yan L, Ma X. Extensive transcriptome data providing great efficacy in genetic research and adaptive gene discovery: a case study of Elymus sibiricus L. (Poaceae, Triticeae). FRONTIERS IN PLANT SCIENCE 2024; 15:1457980. [PMID: 39363927 PMCID: PMC11447521 DOI: 10.3389/fpls.2024.1457980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Genetic markers play a central role in understanding genetic diversity, speciation, evolutionary processes, and how species respond to environmental stresses. However, conventional molecular markers are less effective when studying polyploid species with large genomes. In this study, we compared gene expression levels in 101 accessions of Elymus sibiricus, a widely distributed allotetraploid forage species across the Eurasian continent. A total of 20,273 high quality transcriptomic SNPs were identified. In addition, 72,344 evolutionary information loci of these accessions of E. sibiricus were identified using genome skimming data in conjunction with the assembled composite genome. The population structure results suggest that transcriptome SNPs were more effective than SNPs derived from genome skimming data in revealing the population structure of E. sibiricus from different locations, and also outperformed gene expression levels. Compared with transcriptome SNPs, the investigation of population-specifically-expressed genes (PSEGs) using expression levels revealed a larger number of locally adapted genes mainly involved in the ion response process in the Sichuan, Inner Mongolia, and Xizang geographical groups. Furthermore, we performed the weighted gene co-expression network analysis (WGCNA) and successfully identified potential regulators of PSEGs. Therefore, for species lacking genomic information, the use of transcriptome SNPs is an efficient approach to perform population structure analysis. In addition, analyzing genes under selection through nucleotide diversity and genetic differentiation index analysis based on transcriptome SNPs, and exploring PSEG through expression levels is an effective method for analyzing locally adaptive genes.
Collapse
Affiliation(s)
- Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daxu Li
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingqing Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijun Yan
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Gao Z, Yun L, Li Z, Liu Q, Zhang C, Ma Y, Shi F. Hybrid purity identification using EST-SSR markers and heterosis analysis of quantitative traits of Russian wildrye. PeerJ 2022; 10:e14442. [PMID: 36518293 PMCID: PMC9744169 DOI: 10.7717/peerj.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Russian wildrye, Psathyrostachys junceus (Fisch.) Nevski, is widely distributed in the high latitude areas of Eurasia. It plays an important role in grassland ecosystem maintenance, as well as being a valuable palatable forage species for livestock and wildlife. Russian wildrye germplasm has rich phenotypic and genetic diversity and has potential for improvement through crossbreeding. In this study, fifteen Russian wildrye hybrid combinations were produced and one F1 population with 123 putative hybrids was obtained by crossing two individual plants with significant differences in nutritional characteristics and reproductive tiller number. Twelve phenotypic traits of the F1 population were measured for three consecutive years, and ten of the twelve traits were in line with the genetic characteristics of quantitative traits. Hybrid superiority was revealed among F1 hybrids in both nutritional and reproductive traits. One non-recurrent parent plant with the highest PCA-synthesis score was selected and used to make a backcross with the 'BOZOISKY SELECT' male parent, and 143 putative BC1 hybrids were obtained. Sixteen pairs of EST-SSR primers were randomly selected from polymorphic primers derived from different expressed tiller trait related genes. Three primer pairs that amplified both the paternal and maternal characteristic band were used to assess the purity of the F1 population, and three primer pairs (with one shared primer pair) were used to identify the BC1 population. The hybrid purity was 96.75% for the F1 population and 95.80% for the BC1 population, and the results were confirmed by self-fertility test through bagging isolation. The genetic similarity coefficients between the F1 progeny and the male parent ranged from 0.500 to 0.895, and those between the BC1 progeny and the male parent ranged from 0.667 to 0.939. A subset of individuals in the BC1 population had closer genetic distance to the recurrent parent, and genetic variation within the BC1 population decreased compared to the F1 population.
Collapse
Affiliation(s)
- Zhiqi Gao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China,Ministry of Education Key Laboratory of Grassland Resources, Hohhot, China
| | - Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiyu Liu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Chen Zhang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Yingmei Ma
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Xiong Y, Yang J, Xiong Y, Zhao J, Liu L, Liu W, Sha L, Zhou J, You M, Li D, Lei X, Bai S, Ma X. Full-length transcriptome sequencing analysis and characterization, development and validation of microsatellite markers in Kengyilia melanthera. FRONTIERS IN PLANT SCIENCE 2022; 13:959042. [PMID: 35958193 PMCID: PMC9358441 DOI: 10.3389/fpls.2022.959042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2023]
Abstract
As a typical psammophyte of the Triticeae, Kengyilia melanthera possesses high feeding potential and great utilization values in desertification control in the Qinghai-Tibet Plateau. However, few gene function and genetic studies have been performed in K. melanthera. In this study, single-molecule real-time sequencing technology was used to obtain the full-length transcriptome sequence of K. melanthera, following the functional annotation of transcripts and prediction of coding sequences (CDSs), transcription factors (TFs), and long noncoding RNA (lncRNA) sequences. Meanwhile, a total of 42,433 SSR loci were detected, with 5'-UTRs having the most SSR loci and trinucleotide being the most abundant type. In total, 108,399 SSR markers were designed, and 300 SSR markers were randomly selected for diversity verification of K. melanthera. A total of 49 polymorphic SSR markers were used to construct the genetic relationships of 56 K. melanthera accessions, among which 21 SSR markers showed good cross-species transferability among the related species. In conclusion, the full-length transcriptome sequence of the K. melanthera will assist gene prediction and promote molecular biology and genomics research, and the polymorphic SSR markers will promote molecular-assisted breeding and related research of K. melanthera and its relatives.
Collapse
Affiliation(s)
- Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jian Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiqiong Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Li Z, Yun L, Gao Z, Wang T, Ren X, Zhao Y. EST-SSR Primer Development and Genetic Structure Analysis of Psathyrostachys juncea Nevski. FRONTIERS IN PLANT SCIENCE 2022; 13:837787. [PMID: 35295628 PMCID: PMC8919075 DOI: 10.3389/fpls.2022.837787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
Psathyrostachys juncea is a perennial forage grass which plays an important role in soil and water conservation and ecological maintenance in cold and dry areas of temperate regions. In P. juncea, a variety of biotic and abiotic stress related genes have been used in crop improvement, indicating its agronomic, economic, forage, and breeding value. To date, there have been few studies on the genetic structure of P. juncea. Here, the genetic diversity and population structure of P. juncea were analyzed by EST-SSR molecular markers to evaluate the genetic differentiation related to tillering traits in P. juncea germplasm resources. The results showed that 400 simple sequence repeat (SSR) loci were detected in 2,020 differentially expressed tillering related genes. A total of 344 scored bands were amplified using 103 primer pairs, out of which 308 (89.53%) were polymorphic. The Nei's gene diversity of 480 individuals was between 0.092 and 0.449, and the genetic similarity coefficient was between 0.5008 and 0.9111, with an average of 0.6618. Analysis of molecular variance analysis showed that 93% of the variance was due to differences within the population, and the remaining 7% was due to differences among populations. Psathyrostachys juncea materials were clustered into five groups based on population genetic structure, principal coordinate analysis and unweighted pair-group method with arithmetic means (UPGMA) analysis. The results were similar between clustering methods, but a few individual plants were distributed differently by the three models. The clustering results, gene diversity and genetic similarity coefficients showed that the overall genetic relationship of P. juncea individuals was relatively close. A Mantel test, UPGMA and structural analysis also showed a significant correlation between genetic relationship and geographical distribution. These results provide references for future breeding programs, genetic improvement and core germplasm collection of P. juncea.
Collapse
Affiliation(s)
- Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Grassland Resources Ministry of Education, Hohhot, China
| | - Zhiqi Gao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaomin Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|