1
|
Danso Ofori A, Zheng T, Titriku JK, Appiah C, Xiang X, Kandhro AG, Ahmed MI, Zheng A. The Role of Genetic Resistance in Rice Disease Management. Int J Mol Sci 2025; 26:956. [PMID: 39940724 PMCID: PMC11817016 DOI: 10.3390/ijms26030956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Rice (Oryza sativa) is a crucial staple crop for global food security, particularly in Asia. However, rice production faces significant challenges from various diseases that can cause substantial yield losses. This review explores the role of genetic resistance in rice disease management, focusing on the molecular mechanisms underlying plant-pathogen interactions and strategies for developing resistant varieties. The paper discusses qualitative and quantitative resistance, emphasizing the importance of resistance (R) genes, defense-regulator genes, and quantitative trait loci (QTLs) in conferring broad-spectrum disease resistance. Gene-for-gene relationships in rice-pathogen interactions are examined, particularly for Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. The review also covers recent advancements in breeding techniques, including marker-assisted selection, genetic engineering, and genome editing technologies like CRISPR-Cas. These approaches offer promising avenues for enhancing disease resistance in rice while maintaining yield potential. Understanding and exploiting genetic resistance mechanisms is crucial for developing durable and broad-spectrum disease-resistant rice varieties, essential for ensuring sustainable rice production and global food security in the face of evolving pathogen threats and changing environmental conditions.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Charlotte Appiah
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Sivabharathi RC, Rajagopalan VR, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. Haplotype-based breeding: A new insight in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112129. [PMID: 38763472 DOI: 10.1016/j.plantsci.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Haplotype-based breeding (HBB) is one of the cutting-edge technologies in the realm of crop improvement due to the increasing availability of Single Nucleotide Polymorphisms identified by Next Generation Sequencing technologies. The complexity of the data can be decreased with fewer statistical tests and a lower probability of spurious associations by combining thousands of SNPs into a few hundred haplotype blocks. The presence of strong genomic regions in breeding lines of most crop species facilitates the use of haplotypes to improve the efficiency of genomic and marker-assisted selection. Haplotype-based breeding as a Genomic Assisted Breeding (GAB) approach harnesses the genome sequence data to pinpoint the allelic variation used to hasten the breeding cycle and circumvent the challenges associated with linkage drag. This review article demonstrates ways to identify candidate genes, superior haplotype identification, haplo-pheno analysis, and haplotype-based marker-assisted selection. The crop improvement strategies that utilize superior haplotypes will hasten the breeding progress to safeguard global food security.
Collapse
Affiliation(s)
- R C Sivabharathi
- Department of Genetics and Plant breeding, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - R Suresh
- Department of Rice, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, CPPS, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Raveendran
- Directorate of research, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
3
|
Devanna BN, Sucharita S, Sunitha NC, Anilkumar C, Singh PK, Pramesh D, Samantaray S, Behera L, Katara JL, Parameswaran C, Rout P, Sabarinathan S, Rajashekara H, Sharma TR. Refinement of rice blast disease resistance QTLs and gene networks through meta-QTL analysis. Sci Rep 2024; 14:16458. [PMID: 39013915 PMCID: PMC11252161 DOI: 10.1038/s41598-024-64142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.
Collapse
Affiliation(s)
| | - Sumali Sucharita
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Pankaj K Singh
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - D Pramesh
- University of Agricultural Sciences, Raichur, Karnataka, India
| | | | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - C Parameswaran
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Prachitara Rout
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
4
|
Sharma D, Budhlakoti N, Kumari A, Saini DK, Sharma A, Yadav A, Mir RR, Singh AK, Vikas VK, Singh GP, Kumar S. Exploring the genetic architecture of powdery mildew resistance in wheat through QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386494. [PMID: 39022610 PMCID: PMC11251950 DOI: 10.3389/fpls.2024.1386494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Centre for Agriculture Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, Ludhiana, India
| | - Anshu Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aakash Yadav
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding , Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Amit Kumar Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V. K. Vikas
- Divison of Crop Improvement, ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, Tamilnadu, India
| | - Gyanendra Pratap Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
5
|
Khojasteh M, Darzi Ramandi H, Taghavi SM, Taheri A, Rahmanzadeh A, Chen G, Foolad MR, Osdaghi E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. PLANT CELL REPORTS 2024; 43:184. [PMID: 38951262 DOI: 10.1007/s00299-024-03268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
KEY MESSAGE Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.
Collapse
Affiliation(s)
- Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ayat Taheri
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Majid R Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
6
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
7
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
8
|
Kumari A, Sharma D, Sharma P, Wang C, Verma V, Patil A, Imran M, Singh MP, Kumar K, Paritosh K, Caragea D, Kapoor S, Chandel G, Grover A, Jagadish SVK, Katiyar-Agarwal S, Agarwal M. Meta-QTL and haplo-pheno analysis reveal superior haplotype combinations associated with low grain chalkiness under high temperature in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1133115. [PMID: 36968399 PMCID: PMC10031497 DOI: 10.3389/fpls.2023.1133115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Divya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Sahil
- Department of Botany, University of Delhi, Delhi, India
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan, KS, United States
| | - Vibha Verma
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Arun Patil
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Chattisgarh, India
| | - Md Imran
- Department of Botany, University of Delhi, Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Kuldeep Kumar
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, New Delhi, India
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS, United States
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Girish Chandel
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Chattisgarh, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | | | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Bashir S, Rehman N, Fakhar Zaman F, Naeem MK, Jamal A, Tellier A, Ilyas M, Silva Arias GA, Khan MR. Genome-wide characterization of the NLR gene family in tomato ( Solanum lycopersicum) and their relatedness to disease resistance. Front Genet 2022; 13:931580. [PMID: 36544493 PMCID: PMC9760929 DOI: 10.3389/fgene.2022.931580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleotide-binding leucine-rich-repeat receptors (NLR), the largest group of genes associated with plant disease resistance (R), have attracted attention due to their crucial role in protecting plants from pathogens. Genome-wide studies of NLRs have revealed conserved domains in the annotated tomato genome. The 321 NLR genes identified in the tomato genome have been randomly mapped to 12 chromosomes. Phylogenetic analysis and classification of NLRs have revealed that 211 genes share full-length domains categorized into three major clades (CNL, TNL, and RNL); the remaining 110 NLRs share partial domains and are classified in CN, TN, and N according to their motifs and gene structures. The cis-regulatory elements of NLRs exhibit the maximum number of these elements and are involved in response to biotic and abiotic stresses, pathogen recognition, and resistance. Analysis of the phylogenetic relationship between tomato NLRs and orthologs in other species has shown conservation among Solanaceae members and variation with A. thaliana. Synteny and Ka/Ks analyses of Solanum lycopersicum and Solanum tuberosum orthologs have underscored the importance of NLR conservation and diversification from ancestral species millions of years ago. RNA-seq data and qPCR analysis of early and late blight diseases in tomatoes revealed consistent NLR expression patterns, including upregulation in infected compared to control plants (with some exceptions), suggesting the role of NLRs as key regulators in early blight resistance. Moreover, the expression levels of NLRs associated with late blight resistance (Solyc04g007060 [NRC4] and Solyc10g008240 [RIB12]) suggested that they regulate S. lycopersicum resistance to P. infestans. These findings provide important fundamental knowledge for understanding NLR evolution and diversity and will empower the broader characterization of disease resistance genes for pyramiding through speed cloning to develop disease-tolerant varieties.
Collapse
Affiliation(s)
- Sehrish Bashir
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan,*Correspondence: Nazia Rehman, ; Muhammad Ramzan Khan,
| | - Fabia Fakhar Zaman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Atif Jamal
- Crop Disease Research Institute, National Agricultural Research Center, Islamabad, Pakistan
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Muhammad Ilyas
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo Adolfo Silva Arias
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan,PARC Institute for Advanced Studies in Agriculture, NARC, Islamabad, Pakistan,*Correspondence: Nazia Rehman, ; Muhammad Ramzan Khan,
| |
Collapse
|
10
|
Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int J Mol Sci 2022; 23:ijms232113589. [DOI: 10.3390/ijms232113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Banana (Musa spp.), which is one of the world’s most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Collapse
|
11
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
12
|
Shamim M, Sharma D, Bisht D, Maurya R, Kaashyap M, Srivastava D, Mishra A, Kumar D, Kumar M, Juturu VN, Khan NA, Chaudhary S, Hussain R, Singh KN. Proteo-Molecular Investigation of Cultivated Rice, Wild Rice, and Barley Provides Clues of Defense Responses against Rhizoctonia solani Infection. Bioengineering (Basel) 2022; 9:589. [PMID: 36290557 PMCID: PMC9598808 DOI: 10.3390/bioengineering9100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia solani is a soil-borne fungus causing sheath blight disease in cereal crops including rice. Genetic resistance to sheath blight disease in cereal crops is not well understood in most of the host(s). Aside from this, a comparative study on the different hosts at the biochemical and proteomic level upon R. solani infection was not reported earlier. Here, we performed proteomic based analysis and studied defense pathways among cultivated rice (cv. Pusa Basmati-1), wild rice accession (Oryza grandiglumis), and barley (cv. NDB-1445) after inoculation with R. solani. Increased levels of phenol, peroxidase, and β-1, 3-glucanase were observed in infected tissue as compared to the control in all of the hosts. Wild rice accession O. grandiglumis showed a higher level of biochemical signals than barley cv. NDB 1445 and cultivated rice cv. Pusa Basmati-1. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS), differently expressed proteins were also studied in control and after inoculation with R. solani. Wild rice accession O. grandiglumis induced a cysteine protease inhibitor and zinc finger proteins, which have defense functions and resistance against fungal pathogens. On the other hand, barley cv. NDB-1445 and cultivated rice cv. Pusa Basmati-1 mainly induce energy metabolism-related proteins/signals after inoculation with R. solani in comparison to wild rice accession O. grandiglumis. The present comprehensive study of R. solani interaction using three hosts, namely, Pusa Basmati-1 (cultivated rice), O. grandiglumis (wild rice), and NDB-1445 (barley) would interpret wider possibilities in the dissection of the protein(s) induced during the infection process. These proteins may further be correlated to the gene(s) and other related molecular tools that will help for the marker-assisted breeding and/or gene editing for this distressing disease among the major cereal crops.
Collapse
Affiliation(s)
- Md. Shamim
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
- Department of Molecular Biology and Genetic Engineering, Dr. Kalam Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Arrabari, Kishanganj 855107, Bihar, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi 110002, Delhi, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282001, Uttar Pradesh, India
| | - Rashmi Maurya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Mayank Kaashyap
- School of Life Science, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Deepti Srivastava
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Anurag Mishra
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
- Department of Manufacturing and Development, Nextnode Bio Science, Pvt. Ltd., Kadi 384440, Gujarat, India
| | - Mahesh Kumar
- Department of Molecular Biology and Genetic Engineering, Dr. Kalam Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Arrabari, Kishanganj 855107, Bihar, India
| | - Vijaya Naresh Juturu
- Agri Biotech Foundation, Formerly A P Netherlands Biotechnology, Programme, Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - N. A. Khan
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
| | - Sameer Chaudhary
- RASA Life Science Informatics, Law College Road, Pune 411052, Maharashtra, India
| | - Raja Hussain
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
| | - K. N. Singh
- Department of Plant Molecular Biology and Genetic Engineering, A.N.D. University of Agriculture and Technology, Kumarganj, Ayodhya 224229, Uttar Pradesh, India
| |
Collapse
|
13
|
Rahmanzadeh A, Khahani B, Taghavi SM, Khojasteh M, Osdaghi E. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics 2022; 23:680. [PMID: 36192697 PMCID: PMC9531352 DOI: 10.1186/s12864-022-08914-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/27/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is considered a staple food in a number of developing countries. Several diseases attack the crop leading to substantial economic losses around the globe. However, the crop has rarely been investigated for multiple disease resistance traits using Meta-analysis approach. RESULTS AND CONCLUSIONS In this study, in order to identify the most reliable and stable quantitative trait loci (QTL) conveying disease resistance in common bean, we carried out a meta-QTL (MQTL) analysis using 152 QTLs belonging to 44 populations reported in 33 publications within the past 20 years. These QTLs were decreased into nine MQTLs and the average of confidence interval (CI) was reduced by 2.64 folds with an average of 5.12 cM in MQTLs. Uneven distribution of MQTLs across common bean genome was noted where sub-telomeric regions carry most of the corresponding genes and MQTLs. One MQTL was identified to be specifically associated with resistance to halo blight disease caused by the bacterial pathogen Pseudomonas savastanoi pv. phaseolicola, while three and one MQTLs were specifically associated with resistance to white mold and anthracnose caused by the fungal pathogens Sclerotinia sclerotiorum and Colletotrichum lindemuthianum, respectively. Furthermore, two MQTLs were detected governing resistance to halo blight and anthracnose, while two MQTLs were detected for resistance against anthracnose and white mold, suggesting putative genes governing resistance against these diseases at a shared locus. Comparative genomics and synteny analyses provide a valuable strategy to identify a number of well‑known functionally described genes as well as numerous putative novels candidate genes in common bean, Arabidopsis and soybean genomes.
Collapse
Affiliation(s)
- Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
14
|
Veisi S, Sabouri A, Abedi A. Meta-analysis of QTLs and candidate genes associated with seed germination in rice ( Oryza sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1587-1605. [PMID: 36389095 PMCID: PMC9530108 DOI: 10.1007/s12298-022-01232-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/12/2023]
Abstract
Seed germination is one of the critical stages of plant life, and many quantitative trait loci (QTLs) control this complex trait. Meta-analysis of QTLs is a powerful computational technique for estimating the most stable QTLs regardless of the population's genetic background. Besides, this analysis effectively narrows down the confidence interval (CI) to identify candidate genes (CGs) and marker development. In the current study, a comprehensive genome-wide meta-analysis was performed on QTLs associated with germination in rice. This analysis was conducted based on the data reported over the last two decades. In this case, various analyses were performed, including seed germination rate, plumule length, radicle length, germination percentage, coleoptile length, coleorhiza length, radicle fresh weight, germination potential, and germination index. A total of 67 QTLs were projected onto a reference map for these traits and then integrated into 32 meta-QTLs (MQTLs) to provide a genetic framework for seed germination. The average CI of MQTLs was considerably reduced from 15.125 to 8.73 cM compared to the initial QTLs. This situation identified 728 well-known functionally characterized genes and novel putative CGs for investigated traits. The fold change calculation demonstrated that 155 CGs had significant changes in expression analysis. In this case, 112 and 43 CGs were up-regulated and down-regulated during germination, respectively. This study provides an overview and compares genetic loci controlling traits related to seed germination in rice. The findings can bridge the gap between QTLs and CGs for seed germination. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01232-1.
Collapse
Affiliation(s)
- Sheida Veisi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
15
|
Galić V, Mlinarić S, Marelja M, Zdunić Z, Brkić A, Mazur M, Begović L, Šimić D. Contrasting Water Withholding Responses of Young Maize Plants Reveal Link Between Lipid Peroxidation and Osmotic Regulation Corroborated by Genetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:804630. [PMID: 35873985 PMCID: PMC9296821 DOI: 10.3389/fpls.2022.804630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Linking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation (TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and current water content (CWC). Proline accumulation was found to be influenced by H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism. Most of the associations detected were for proline (29.4%) and TBARS (44.1%). Gene ontology (GO) enrichment analysis showed significant enrichment in regulation of integral membrane parts and peroxisomes along with regulation of transcription and polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes are needed to elucidate the role of this signaling mechanism in regulation of response to water deficit.
Collapse
Affiliation(s)
- Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Marelja
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zvonimir Zdunić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Andrija Brkić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Maja Mazur
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Domagoj Šimić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Osijek, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| |
Collapse
|
16
|
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Kumar S, Balyan HS, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2385-2405. [PMID: 35699741 DOI: 10.1007/s00122-022-04119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
17
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
18
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
19
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
20
|
Iqbal Z, Iqbal MS, Khan MIR, Ansari MI. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. FRONTIERS IN PLANT SCIENCE 2021; 12:741419. [PMID: 34721467 PMCID: PMC8554098 DOI: 10.3389/fpls.2021.741419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
21
|
Saini DK, Chopra Y, Pal N, Chahal A, Srivastava P, Gupta PK. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2245-2267. [PMID: 34744364 PMCID: PMC8526679 DOI: 10.1007/s12298-021-01085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 05/04/2023]
Abstract
In wheat, meta-QTLs (MQTLs), ortho-MQTLs, and candidate genes (CGs) were identified for nitrogen use efficiency and root system architecture. For this purpose, 1788 QTLs were available from 24 studies published during 2006-2020. Of these, 1098 QTLs were projected onto the consensus map resulting in 118 MQTLs. The average confidence interval (CI) of MQTLs was reduced up to 8.56 folds in comparison to the average CI of QTLs. Of the 118 MQTLs, 112 were anchored to the physical map of the wheat reference genome. The physical interval of MQTLs ranged from 0.02 to 666.18 Mb with a mean of 94.36 Mb. Eighty-eight of these 112 MQTLs were verified by marker-trait associations (MTAs) identified in published genome-wide association studies (GWAS); the MQTLs that were verified using GWAS also included 9 most robust MQTLs, which are particularly useful for breeders; we call them 'Breeder's QTLs'. Some selected wheat MQTLs were further utilized for the identification of ortho-MQTLs for wheat and maize; 9 such ortho-MQTLs were available. As many as 1991 candidate genes (CGs) were also detected, which included 930 CGs with an expression level of > 2 transcripts per million in relevant organs/tissues. Among the CGs, 97 CGs with functions previously reported as important for the traits under study were selected. Based on homology analysis and expression patterns, 49 orthologues of 35 rice genes were also identified in MQTL regions. The results of the present study may prove useful for the improvement of selection strategy for yield potential, stability, and performance under N-limiting conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01085-0.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
- Present Address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
22
|
Meta-Analysis of Quantitative Traits Loci (QTL) Identified in Drought Response in Rice ( Oryza sativa L.). PLANTS 2021; 10:plants10040716. [PMID: 33917162 PMCID: PMC8067883 DOI: 10.3390/plants10040716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022]
Abstract
Rice is an important grain that is the staple food for most of the world's population. Drought is one of the major stresses that negatively affects rice yield. The nature of drought tolerance in rice is complex as it is determined by various components and has low heritability. Therefore, to ensure success in breeding programs for drought tolerant rice, QTLs (quantitative trait loci) of interest must be stable in a variety of plant genotypes and environments. This study identified stable QTLs in rice chromosomes in a variety of backgrounds and environments and conducted a meta-QTL analysis of stable QTLs that have been reported by previous research for use in breeding programs. A total of 653 QTLs for drought tolerance in rice from 27 genetic maps were recorded for analysis. The QTLs recorded were related to 13 traits in rice that respond to drought. Through the use of BioMercartor V4.2, a consensus map containing QTLs and molecular markers were generated using 27 genetic maps that were extracted from the previous 20 studies and meta-QTL analysis was conducted on the consensus map. A total of 70 MQTLs were identified and a total of 453 QTLs were mapped into the meta-QTL areas. Five meta-QTLs from chromosome 1 (MQTL 1.5 and MQTL 1.6), chromosome 2 (MQTL2.1 and MQTL 2.2) and chromosome 3 (MQTL 3.1) were selected for functional annotation as these regions have high number of QTLs and include many traits in rice that respond to drought. A number of genes in MQTL1.5 (268 genes), MQTL1.6 (640 genes), MQTL 2.1 (319 genes), MQTL 2.2 (19 genes) and MQTL 3.1 (787 genes) were annotated through Blast2GO. Few major proteins that respond to drought stress were identified in the meta-QTL areas which are Abscisic Acid-Insensitive Protein 5 (ABI5), the G-box binding factor 4 (GBF4), protein kinase PINOID (PID), histidine kinase 2 (AHK2), protein related to autophagy 18A (ATG18A), mitochondrial transcription termination factor (MTERF), aquaporin PIP 1-2, protein detoxification 48 (DTX48) and inositol-tetrakisphosphate 1-kinase 2 (ITPK2). These proteins are regulatory proteins involved in the regulation of signal transduction and gene expression that respond to drought stress. The meta-QTLs derived from this study and the genes that have been identified can be used effectively in molecular breeding and in genetic engineering for drought resistance/tolerance in rice.
Collapse
|