1
|
Fandino ACA, Vigneron N, Alfonso E, Burdet JP, Remolif E, Cattani AM, Smit-Sadki T, Cluzet S, Valls-Fonayet J, Pétriacq P, Rienth M. Priming grapevines with oregano essential oil vapour results in a metabolomic shift eliciting resistance against downy mildew. BMC PLANT BIOLOGY 2024; 24:1180. [PMID: 39695378 DOI: 10.1186/s12870-024-05875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Priming plants with natural products is extensively studied in the agricultural field to reduce the use of synthetic and copper-based pesticides. Previous studies have shown that Oregano essential oil vapour (OEOV) is an effective priming agent against downy mildew (DM) in grapevine (Vitis vinifera L. cv. Chasselas), activating different transcriptomic regulated defence mechanisms. RESULTS In the present study, we complement transcriptomic data with metabolomic insights, confirming some previous regulating patterns and highlighting new mechanisms underlying OEOV-induced resistance. A significant modulation of the phenylpropanoid pathway was noted. The data also confirmed the induction of an oxidative stress response indicated by an up-regulation of reactive oxygen species (ROS)-related genes and a congruent depletion of putative L-glutathione. Interestingly, OEOV promoted the accumulation of organic metabolites such as terpenes and other potential phytoalexins, which could potentially contribute to grapevine innate immune response to Plasmopara viticola. CONCLUSION Overall, this study uncovered a diverse influence of OEOV on V. vinifera defence mechanisms against DM, enhancing our comprehension of the mode of action of essential oils. This insight offers various prospects for crafting innovative biocontrol products, fostering a more dynamic and sustainable approach to agriculture.
Collapse
Affiliation(s)
- Ana Cecilia Aliaga Fandino
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Nicolas Vigneron
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Esteban Alfonso
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Jean-Philippe Burdet
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Eric Remolif
- Agroscope, Plant Protection, Mycology, Route de Duillier 60, Nyon, 1260, Switzerland
| | - Amanda Malvessi Cattani
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Tara Smit-Sadki
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, F-33140, France
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, F-33140, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, 33140, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, Villenave d'Ornon, 33882, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, 33140, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland.
| |
Collapse
|
2
|
Gokulan CG, Bangale U, Balija V, Ballichatla S, Potupureddi G, Rao D, Varma P, Magar N, Jallipalli K, Manthri S, Padmakumari AP, Laha GS, Rao LVS, Barbadikar KM, Raman MS, Patel HK, Maganti SM, Sonti RV. Multiomics-assisted characterization of rice-Yellow Stem Borer interaction provides genomic and mechanistic insights into stem borer resistance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:122. [PMID: 38713254 DOI: 10.1007/s00122-024-04628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.
Collapse
Affiliation(s)
- C G Gokulan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Umakanth Bangale
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Vishalakshi Balija
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Suneel Ballichatla
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gopi Potupureddi
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Deepti Rao
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Prashanth Varma
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Nakul Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Karteek Jallipalli
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Sravan Manthri
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - A P Padmakumari
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - Gouri S Laha
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | - L V Subba Rao
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India
| | | | | | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Ghaziabad, 201002, India.
| | - Sheshu Madhav Maganti
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana, 500030, India.
- ICAR-Central Tobacco Research Institute, Rajamahendravaram, Andhra Pradesh, 533105, India.
| | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
3
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
4
|
Azevedo V, Daddiego L, Cardone MF, Perrella G, Sousa L, Santos RB, Malhó R, Bergamini C, Marsico AD, Figueiredo A, Alagna F. Transcriptomic and methylation analysis of susceptible and tolerant grapevine genotypes following Plasmopara viticola infection. PHYSIOLOGIA PLANTARUM 2022; 174:e13771. [PMID: 36053855 PMCID: PMC9826190 DOI: 10.1111/ppl.13771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.
Collapse
Affiliation(s)
- Vanessa Azevedo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Loretta Daddiego
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | | | - Lisete Sousa
- Department of Statistics and Operations Research, Faculdade de Ciências; Centre of Statistics and its Applications (CEAUL)Universidade de LisboaLisbonPortugal
| | - Rita B. Santos
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Rui Malhó
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Antonio Domenico Marsico
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA)TuriBariItaly
| | - Andreia Figueiredo
- Faculdade de Ciências, Plant Biology Department, Biosystems & Integrative Sciences Institute (BioISI)Universidade de LisboaLisbonPortugal
| | - Fiammetta Alagna
- Energy Technologies and Renewable Sources DepartmentNational Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research CentreRotondellaMateraItaly
| |
Collapse
|
5
|
Pereira G, Pereira J, Santos RB, Figueiredo A. Uncovering the role of DNA methyltransferases in grapevine - Plasmopara viticola interaction: From genome-wide characterization to global methylation patterns. Gene 2022; 837:146693. [PMID: 35738444 DOI: 10.1016/j.gene.2022.146693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
Epigenetic regulation has recently gained prominence in the field of plant-pathogen interactions, providing a deeper understanding of the molecular mechanisms associated with plant infection. In grapevine interaction with pathogens, epigenetic regulation still remains a black box. In this work, we characterized grapevine DNA methyltransferase gene family and identified nine DNA methyltransferases genes across eight grapevine chromosomes coding for 17 proteins. We also assessed the modulation of global cytosine methylation and gene expression levels of these genes with the aim of establishing a connection between DNA methylation and grapevine resistance towards downy mildew. Our results revealed that, in the incompatible interaction, an early hypomethylation, coupled with downregulation of DNMT and CMT genes occurs very early after pathogen inoculation. Additionally, the compatible interaction is characterized by a hypermethylation at 6hpi. A temporal delay is evident between the shifts in DNA methyltransferases gene expression in both compatible and incompatible interactions which in turn may be reflected in the global methylation percentage. Overall, we present the first evidence of an epigenetic regulation role in grapevine defense against P. viticola.
Collapse
Affiliation(s)
- Gonçalo Pereira
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - João Pereira
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal; Plant Biology Department, Faculty of Sciences, BioISI, University of Lisbon, Lisboa, Portugal.
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal; Plant Biology Department, Faculty of Sciences, BioISI, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
6
|
Teixeira A, Noronha H, Sebastiana M, Fortes AM, Gerós H. A proteomic analysis shows the stimulation of light reactions and inhibition of the Calvin cycle in the skin chloroplasts of ripe red grape berries. FRONTIERS IN PLANT SCIENCE 2022; 13:1014532. [PMID: 36388544 PMCID: PMC9641181 DOI: 10.3389/fpls.2022.1014532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 05/10/2023]
Abstract
The role of photosynthesis in fruits still challenges scientists. This is especially true in the case of mature grape berries of red varieties lined by an anthocyanin-enriched exocarp (skin) almost impermeable to gases. Although chlorophylls are degraded and replaced by carotenoids in several fruits, available evidence suggests that they may persist in red grapes at maturity. In the present study, chloroplasts were isolated from the skin of red grape berries (cv. Vinhão) to measure chlorophyll levels and the organelle proteome. The results showed that chloroplasts (and chlorophylls) are maintained in ripe berries masked by anthocyanin accumulation and that the proteome of chloroplasts from green and mature berries is distinct. Several proteins of the light reactions significantly accumulated in chloroplasts at the mature stage including those of light-harvesting complexes of photosystems I (PSI) and II (PSII), redox chain, and ATP synthase, while chloroplasts at the green stage accumulated more proteins involved in the Calvin cycle and the biosynthesis of amino acids, including precursors of secondary metabolism. Taken together, results suggest that although chloroplasts are more involved in biosynthetic reactions in green berries, at the mature stage, they may provide ATP for cell maintenance and metabolism or even O2 to feed the respiratory demand of inner tissues.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Mónica Sebastiana
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Margarida Fortes
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Laureano G, Cavaco AR, Matos AR, Figueiredo A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew. Int J Mol Sci 2021; 22:ijms22115473. [PMID: 34067363 PMCID: PMC8196838 DOI: 10.3390/ijms22115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.
Collapse
|
8
|
Vandelle E, Ariani P, Regaiolo A, Danzi D, Lovato A, Zadra C, Vitulo N, Gambino G, Polverari A. The Grapevine E3 Ubiquitin Ligase VriATL156 Confers Resistance against the Downy Mildew Pathogen Plasmopara viticola. Int J Mol Sci 2021; 22:ijms22020940. [PMID: 33477914 PMCID: PMC7833427 DOI: 10.3390/ijms22020940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
- Correspondence: (E.V.); (A.P.); Tel.: +39-045-802-7826 (E.V.); +39-045-802-7064 (A.P.)
| | - Pietro Ariani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
| | - Alice Regaiolo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
| | - Arianna Lovato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
| | - Claudia Zadra
- Department of Pharmaceutical Sciences, University of Perugia, Borgo XX Giugno 72, 06121 Perugia, Italy;
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - Annalisa Polverari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, CV1, 37134 Verona, Italy; (P.A.); (A.R.); (D.D.); (A.L.); (N.V.)
- Correspondence: (E.V.); (A.P.); Tel.: +39-045-802-7826 (E.V.); +39-045-802-7064 (A.P.)
| |
Collapse
|