1
|
Wang X, Shi Q, Liu N, Cao J, Huang W. Light Intensity Dependence of CO 2 Assimilation Is More Related to Biochemical Capacity Rather than Diffusional Conductance. PLANTS (BASEL, SWITZERLAND) 2025; 14:986. [PMID: 40219055 PMCID: PMC11990357 DOI: 10.3390/plants14070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
The response of CO2 assimilation rate (AN) to incident light intensity reflects the efficiency of light utilization. The light intensity dependence of AN varies widely among different plant species, yet the underlying mechanisms remain poorly understood. To elucidate this issue, we measured the light intensity dependence of gas exchange and chlorophyll fluorescence in twelve tree species. The results indicated that (1) with increasing light intensity, the variation in AN was closely related to stomatal conductance (gs), mesophyll conductance (gm), the maximum velocity of Rubisco carboxylation (Vcmax), and electron transport rate (ETR); (2) compared with AN at sub-saturating light, the increase in AN at saturating light was more strongly associated with Vcmax and ETR than with gs and gm; and (3) the increase in Vcmax and AN from 600 to 2000 μmol photons m-2 s-1 were positively correlated with the maximum capacity of Vcmax. These findings suggest that Vcmax is an energy-dependent process that significantly regulates the light intensity dependence of AN in plants. This provides valuable insights for crop improvement through the manipulation of Vcmax.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.W.); (Q.S.); (N.L.)
| | - Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.W.); (Q.S.); (N.L.)
| | - Ningyu Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.W.); (Q.S.); (N.L.)
| | - Jianxin Cao
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (X.W.); (Q.S.); (N.L.)
| |
Collapse
|
2
|
Pang Y, Liao Q, Peng H, Qian C, Wang F. CO 2 mesophyll conductance regulated by light: a review. PLANTA 2023; 258:11. [PMID: 37289402 DOI: 10.1007/s00425-023-04157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Light quality and intensity regulate plant mesophyll conductance, which has played an essential role in photosynthesis by controlling leaf structural and biochemical properties. Mesophyll conductance (gm), a crucial physiological factor influencing the photosynthetic rate of leaves, is used to describe the resistance of CO2 from the sub-stomatal cavity into the chloroplast up to the carboxylation site. Leaf structural and biochemical components, as well as external environmental factors such as light, temperature, and water, all impact gm. As an essential factor of plant photosynthesis, light affects plant growth and development and plays a vital role in regulating gm as well as determining photosynthesis and yield. This review aimed to summarize the mechanisms of gm response to light. Both structural and biochemical perspectives were combined to reveal the effects of light quality and intensity on the gm, providing a guide for selecting the optimal conditions for intensifying photosynthesis in plants.
Collapse
Affiliation(s)
- Yadan Pang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
| | - Honggui Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Chun Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China.
| |
Collapse
|
3
|
Sun H, Zhang YQ, Zhang SB, Huang W. Photosynthetic Induction Under Fluctuating Light Is Affected by Leaf Nitrogen Content in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:835571. [PMID: 35251106 PMCID: PMC8891375 DOI: 10.3389/fpls.2022.835571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 06/09/2023]
Abstract
The response of photosynthetic CO2 assimilation to changes of illumination affects plant growth and crop productivity under natural fluctuating light conditions. However, the effects of nitrogen (N) supply on photosynthetic physiology after transition from low to high light are seldom studied. To elucidate this, we measured gas exchange and chlorophyll fluorescence under fluctuating light in tomato (Solanum lycopersicum) seedlings grown with different N conditions. After transition from low to high light, the induction speeds of net CO2 assimilation (A N ), stomatal conductance (g s ), and mesophyll conductance (g m ) delayed with the decline in leaf N content. The time to reach 90% of maximum A N , g s and g m was negatively correlated with leaf N content. This delayed photosynthetic induction in plants grown under low N concentration was mainly caused by the slow induction response of g m rather than that of g s . Furthermore, the photosynthetic induction upon transfer from low to high light was hardly limited by photosynthetic electron flow. These results indicate that decreased leaf N content declines carbon gain under fluctuating light in tomato. Increasing the induction kinetics of g m has the potential to enhance the carbon gain of field crops grown in infertile soil.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M. The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO 2 in Seedlings of Four Tree Species in Subtropical China. PLANTS 2021; 10:plants10102213. [PMID: 34686021 PMCID: PMC8540425 DOI: 10.3390/plants10102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation proportion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.
Collapse
Affiliation(s)
- Jingchao Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China; (J.T.); (B.S.)
| | - Ruimei Cheng
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
- Correspondence: ; Tel.: +86-010-62888308
| | - Da Luo
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; (R.C.); (D.L.); (S.L.)
| | - Mauro Centritto
- Institute for Sustainable Pant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|