1
|
Tian C, Rehman A, Wang X, Wang Z, Li H, Ma J, Du X, Peng Z, He S. Late embryogenesis abundant gene GhLEA-5 of semi-wild cotton positively regulates salinity tolerance in upland cotton. Gene 2025; 949:149372. [PMID: 40023341 DOI: 10.1016/j.gene.2025.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The productivity and quality of cotton are significantly compromised by salt stress. In this study, the full length of encoding region and genomic DNA sequences of GhLEA_5A/D (Gh_A10G166600 and Gh_D10G188300), which belong to the late embryogenesis abundant gene family in allotetraploid upland cotton (Gossypium hirsutum L.) and semi-wild cotton (Gossypium purpurascens), were isolated and their salt tolerance was experimentally confirmed. Analysis of sequence alignments and phylogenetic trees indicated a significant level of homology between GhLEA-5A and GhLEA-5D. Additionally, a conserved protein motif was consistently identified across these sequences. The transcriptome data analysis showed that the expression level of GhLEA-5A/D was substantially enhanced in the leaves of salt-tolerant G. purpurascens accessions compared to salt-sensitive materials. In the real-time quantitative reverse transcription PCR (qRT-PCR) assays, notable expression levels of the GhLEA-5D gene were detected in salt-tolerant upland cotton materials following exposure to salt stress at 3 and 12-hour time points. The suppression of GhLEA-5A/D transcription via Virus-induced Gene Silencing (VIGS) technology significantly exacerbates salt sensitivity in cotton. This is evidenced by the nearly 50 % increase in malondialdehyde (MDA) content alongside a 60 % reduction in peroxidase (POD) levels in salt-treated plants when compared to the control group. The overexpression of the GhLEA-5A/D gene conferred enhanced salt tolerance in Arabidopsis, resulting in a 25 % increase in root length, a 30 % improvement in survival rate, a 15 % increase in water retention, and a 15 % boost in photosynthetic efficiency. The chlorophyll fluorescence parameters, enzyme activities, diaminobenzine, and nitroblue tetrazolium staining suggested that GhLEA-5A/D likely exhibited a positive regulatory role for cotton responding to salt stress. Furthermore, we identified 76 candidate proteins that potentially interact with GhLEA-5 in the yeast two-hybrid screening library. These results provide a theoretical basis for studying the mechanism of cotton salt tolerance and offer new resources for improving cotton salt tolerance genes.
Collapse
Affiliation(s)
- Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhenzhen Wang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
2
|
Wei J, Zhang N, Deng Y, Liu S, Yang L, Wang X, Wen R, Si H. Functional analysis of the StERF79 gene in response to drought stress in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:387. [PMID: 40140775 PMCID: PMC11948967 DOI: 10.1186/s12870-025-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The AP2/ERF (APETALA 2/ethylene-responsive element binding factors) is a class of superfamily of plant-specific transcription factor that play an important regulatory role in many physiological and biochemical processes in plants. RESULTS In this study, overexpression of the StERF79 gene increased drought tolerance in potato plants, whereas StERF79 RNA interference expression (RNAi) lines decreased drought tolerance in potato plants. In addition, the superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) activities, as well as proline (Pro) content of StERF79 transgenic lines, showed significantly higher results than those of the wild type (WT) potato plants under natural drought stress conditions, while the malondialdehyde (MDA) content was lower. The StERF79 transcription factor can respond to drought stress by interacting with a DRE cis-acting element in the promoter region of the downstream target gene (StDHN-2), and activating its expression, the result was validated by using yeast one hybrid (Y1H), Dual-Luciferase and β-glucuronidase (GUS) staining assays both in vivo and in vitro. The StDHN-2 gene is a member of the dehydrin (DHN) subfamily of the potato plant late embryonic developmentally abundant (LEA) protein family. LEA, hydrophilic proteins found in plants, serve as cellular dewatering protectants to prevent desiccation during various stresses. CONCLUSION The results could provide novel knowledge into the functional analysis of the StERF79 gene in positive regulation of the StDHN-2 gene to drought response and its possible mechanisms in potato plants. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jingjing Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yurong Deng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liang Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaofeng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ruiting Wen
- Lintao Agricultural School in Dingxi City, Lintao, 730500, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Zhu X, Majeed Y, Zhang N, Li W, Duan H, Dou X, Jin H, Chen Z, Chen S, Zhou J, Wang Q, Tang J, Zhang Y, Si H. Identification of autophagy gene family in potato and the role of StATG8a in salt and drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14584. [PMID: 39431433 DOI: 10.1111/ppl.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Autophagy is a highly conserved method of recycling cytoplasm components in eukaryotes. It plays an important role in plant growth and development, as well as in response to biotic and abiotic stresses. Although autophagy-related genes (ATGs) have been identified in several crop species, their particular role in potato (Solanum tuberosum L.) remains unclear. Several transcription factors and signaling genes in the transgenic lines of the model plant Arabidopsis thaliana, such as AtTSPO, AtBES1, AtPIP2;7, AtCOST1 as well as AtATI1/2, ATG8f, GFP-ATG8F-HA, AtDSK2, AtNBR1, AtHKT1 play crucial functions under drought and salt stresses, respectively. In this study, a total of 29 putative StATGs from 15 different ATG subfamilies in the potato genome were identified. Their physicochemical properties, evolutionary connections, chromosomal distribution, gene duplication, protein-protein interaction network, conserved motifs, gene structure, interspecific collinearity relationship, and cis-regulatory elements were analyzed. The results of qRT-PCR detection of StATG expression showed that 29 StATGs were differentially expressed in potato's leaves, flowers, petiole, stem, stolon, tuber, and root. StATGs were dynamically modulated by salt and drought stresses and up-regulated under salt and drought conditions. Our results showed that the StATG8a localized in the cytoplasm and the nucleus. Potato cultivar "Atlantic" overexpressing or downregulating StATG8a were constructed. Based on physiological, biochemical, and photosynthesis parameters, potato lines overexpressing StATG8a exhibited 9 times higher drought and salt tolerance compared to non-transgenic plants. In contrast, the potato plants with knockdown expression showed a downtrend in drought and salt tolerance compared to non-transgenic potato lines. These results could provide new insights into the function of StATG8a in salt and drought response and its possible mechanisms.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yasir Majeed
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wei Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Xuemei Dou
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Qihua Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
5
|
Dawane A, Deshpande S, Vijayaraghavreddy P, Vemanna RS. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108513. [PMID: 38513519 DOI: 10.1016/j.plaphy.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Collapse
Affiliation(s)
- Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | | | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
6
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
7
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Zhou C, Niu S, El-Kassaby YA, Li W. Genome-wide identification of late embryogenesis abundant protein family and their key regulatory network in Pinus tabuliformis cold acclimation. TREE PHYSIOLOGY 2023; 43:1964-1985. [PMID: 37565812 DOI: 10.1093/treephys/tpad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Cold acclimation is a crucial biological process that enables conifers to overwinter safely. The late embryogenesis abundant (LEA) protein family plays a pivotal role in enhancing freezing tolerance during this process. Despite its importance, the identification, molecular functions and regulatory networks of the LEA protein family have not been extensively studied in conifers or gymnosperms. Pinus tabuliformis, a conifer with high ecological and economic values and with high-quality genome sequence, is an ideal candidate for such studies. Here, a total of 104 LEA genes were identified from P. tabuliformis, and we renamed them according to their subfamily group: PtLEA1-PtLEA92 (group LEA1-LEA6), PtSMP1-PtSMP6 (group seed maturation protein) and PtDHN1-PtDHN6 (group Dehydrin). While the sequence structure of P. tabuliformis LEA genes are conserved, their physicochemical properties exhibit unique characteristics within different subfamily groupings. Notably, the abundance of low-temperature responsive elements in PtLEA genes was observed. Using annual rhythm and temperature gradient transcriptome data, PtLEA22 was identified as a key gene that responds to low-temperature induction while conforming to the annual cycle of cold acclimation. Overexpression of PtLEA22 enhanced Arabidopsis freezing tolerance. Furthermore, several transcription factors potentially co-expressed with PtLEA22 were validated using yeast one-hybrid and dual-luciferase assays, revealing that PtDREB1 could directly bind PtLEA22 promoter to positively regulate its expression. These findings reveal the genome-wide characterization of P. tabuliformis LEA genes and their importance in the cold acclimation, while providing a theoretical basis for studying the molecular mechanisms of cold acclimation in conifers.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, 85 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
9
|
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton ( Gossypium purpurascens). Int J Mol Sci 2023; 24:12853. [PMID: 37629034 PMCID: PMC10454576 DOI: 10.3390/ijms241612853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xuran Jiang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xiaoyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
10
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
11
|
Polyakov V, Bauer T, Butova V, Minkina T, Rajput VD. Nanoparticles-Based Delivery Systems for Salicylic Acid as Plant Growth Stimulator and Stress Alleviation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1637. [PMID: 37111860 PMCID: PMC10146285 DOI: 10.3390/plants12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The population growth tendency leads to an increase in demand for food products, and in particular, products obtained from the processing of plants. However, there are issues of biotic and abiotic stresses that can significantly reduce crop yields and escalate the food crisis. Therefore, in recent years, the development of new methods of plant protection became an important task. One of the most promising ways to protect plants is to treat them with various phytohormones. Salicylic acid (SA) is one of the regulators of systemic acquired resistance (SAR) signaling pathways. These mechanisms are able to protect plants from biotic and abiotic stresses by increasing the expression of genes that encode antioxidant enzymes. However, salicylic acid in high doses can act as an antagonist and have the negative rebound effect of inhibition of plant growth and development. To maintain optimal SA concentrations in the long term, it is necessary to develop systems for the delivery and slow release of SA in plants. The purpose of this review is to summarize and study methods of delivery and controlled release of SA in a plant. Various carriers-based nanoparticles (NPs) synthesized from both organic and inorganic compounds, their chemical structure, impacts on plants, advantages, and disadvantages are comprehensively discussed. The mechanisms of controlled release of SA and the effects of the use of the considered composites on the growth and development of plants are also described. The present review will be helpful to design or fabricate NPs and NPs-based delivery systems for salicylic acid-controlled release and better understating of the mechanism of SA-NPs interaction to alleviate stress on plants.
Collapse
Affiliation(s)
- Vladimir Polyakov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Bauer
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vera Butova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
12
|
Nanobiotechnological Approaches to Enhance Drought Tolerance in Catharanthus roseus Plants Using Salicylic Acid in Bulk and Nanoform. Molecules 2022; 27:molecules27165112. [PMID: 36014352 PMCID: PMC9412284 DOI: 10.3390/molecules27165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Drought has a detrimental effect on crop production, affecting economically important plants’ growth rates and development. Catharanthus roseus is an important medicinal plant that produces many pharmacologically active compounds, some of which have significant antitumor activity. The effect of bulk salicylic acid (SA) and salicylic acid nanoparticles (SA-NPs) were evaluated on water-stressed Catharanthus roseus plants. The results showed that SA and SA-NPs alleviated the negative effects of drought in the treated plants by increasing their shoot and root weights, relative water content, leaf area index, chlorophyll content, and total alkaloids percentage. From the results, a low concentration (0.05 mM) of SA-NPs exerted positive effects on the treated plants, while the best results of the bulk SA were recorded after using the highest concentration (0.1 mM). Both treatments increased the expression level of WRKY1, WRKY2, WRKY40, LEA, and MYC2 genes, while the mRNA level of MPKK1 and MPK6 did not show a significant change. This study discussed the importance of SA-NPs in the induction of drought stress tolerance even when used in low concentrations, in contrast to bulk SA, which exerts significant results only at higher concentrations.
Collapse
|
13
|
Abid G, Ouertani RN, Ghouili E, Muhovski Y, Jebara SH, Abdelkarim S, Chaieb O, Ben Redjem Y, El Ayed M, Barhoumi F, Souissi F, Jebara M. Exogenous application of spermidine mitigates the adverse effects of drought stress in faba bean ( Vicia faba L.). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:405-420. [PMID: 35209990 DOI: 10.1071/fp21125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In Tunisia, drought stress is a major environmental factor limiting crop production and causing relatively low and unstable faba bean yields. In the present study, we explored the putative role of spermidine (0.5, 1, 1.5 and 2mM) in ameliorating the effects of drought stress induced by polyethylene glycol (PEG-6000, -0.58MPa) in faba bean seedlings. Drought stress reduced photosynthetic performance, chlorophyll and relative water content in leaves of faba bean variety Badii. Moreover, drought increased proline, electrolyte leakage and malondialdehyde content by inducing reactive oxygen species (hydrogen peroxide) generation in leaves. However, applying spermidine increased the activities of catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase. The results show that the application of spermidine especially at a rate of 1.5mM effectively reduces oxidative damage and alleviates negative effects caused by drought stress. In addition, exogenous spermidine increased the expression of polyamine biosynthetic enzymes' genes (VfADC , VfSAMDC and VfSPDS ), and reduced the expression of VfSPMS suggesting that exogenous spermidine can regulate polyamines' metabolic status under drought challenge, and consequently may enhance drought stress tolerance in faba bean. Real-time quantitative polymerase chain reaction analysis revealed that some drought responsive genes (VfNAC , VfHSP , VfNCED , VfLEA , VfCAT , VfAPX , VfRD22 , VfMYB , VfDHN , VfERF , VfSOD and VfWRKY ) from various metabolic pathways were differentially expressed under drought stress. Overall, these genes were more abundantly transcribed in the spermidine-treated plants compared to untreated suggesting an important role of spermidine in modulating faba bean drought stress response and tolerance.
Collapse
Affiliation(s)
- Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Yordan Muhovski
- Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, BP 234, Gembloux 5030, Belgium
| | - Salwa Harzalli Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Souhir Abdelkarim
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Yosr Ben Redjem
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Mohamed El Ayed
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Fathi Barhoumi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Fatma Souissi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
14
|
Raja V, Wani UM, Wani ZA, Jan N, Kottakota C, Reddy MK, Kaul T, John R. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. PLANT CELL REPORTS 2022; 41:619-637. [PMID: 34383122 DOI: 10.1007/s00299-021-02764-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.
Collapse
Affiliation(s)
- Vaseem Raja
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Umer Majeed Wani
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Zubair Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Chandrasekhar Kottakota
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Malireddy K Reddy
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Tanushri Kaul
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
15
|
Li R, Su X, Zhou R, Zhang Y, Wang T. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. BMC PLANT BIOLOGY 2022; 22:36. [PMID: 35039015 PMCID: PMC8762937 DOI: 10.1186/s12870-021-03410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of mulberry leaves has long been limited to raising silkworms, but with the continuous improvement of mulberry (Morus alba) resource development and utilization, various mulberry leaf extension products have emerged. However, the fresh leaves of mulberry trees have a specific window of time for picking and are susceptible to adverse factors, such as drought stress. Therefore, exploring the molecular mechanism by which mulberry trees resist drought stress and clarifying the regulatory network of the mulberry drought response is the focus of the current work. RESULTS In this study, natural and drought-treated mulberry grafted seedlings were used for transcriptomic and proteomic analyses (CK vs. DS9), aiming to clarify the molecular mechanism of the mulberry drought stress response. Through transcriptome and proteome sequencing, we identified 9889 DEGs and 1893 DEPs enriched in stress-responsive GO functional categories, such as signal transducer activity, antioxidant activity, and transcription regulator activity. KEGG enrichment analysis showed that a large number of codifferentially expressed genes were enriched in flavonoid biosynthesis pathways, hormone signalling pathways, lignin metabolism and other pathways. Through subsequent cooperation analysis, we identified 818 codifferentially expressed genes in the CK vs. DS9 comparison group, including peroxidase (POD), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDHs), glutathione s-transferase (GST) and other genes closely related to the stress response. In addition, we determined that the mulberry gene MaWRKYIII8 (XP_010104968.1) underwent drought- and abscisic acid (ABA)-induced expression, indicating that it may play an important role in the mulberry response to drought stress. CONCLUSIONS Our research shows that mulberry can activate proline and ABA biosynthesis pathways and produce a large amount of proline and ABA, which improves the drought resistance of mulberry. MaWRKYIII8 was up-regulated and induced by drought and exogenous ABA, indicating that MaWRKYIII8 may be involved in the mulberry response to drought stress. These studies will help us to analyse the molecular mechanism underlying mulberry drought tolerance and provide important gene information and a theoretical basis for improving mulberry drought tolerance through molecular breeding in the future.
Collapse
Affiliation(s)
- Ruixue Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueqiang Su
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rong Zhou
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuping Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China.
| |
Collapse
|
16
|
Karpinska B, Razak N, Shaw DS, Plumb W, Van De Slijke E, Stephens J, De Jaeger G, Murcha MW, Foyer CH. Late Embryogenesis Abundant (LEA)5 Regulates Translation in Mitochondria and Chloroplasts to Enhance Growth and Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:875799. [PMID: 35783976 PMCID: PMC9244843 DOI: 10.3389/fpls.2022.875799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 05/22/2023]
Abstract
The late embryogenesis abundant (LEA)5 protein is predominantly expressed in Arabidopsis leaves in the dark, the levels of LEA5 transcripts decreasing rapidly upon illumination. LEA5 is important in plant responses to environmental stresses but the mechanisms involved have not been elucidated. We therefore explored LEA5 functions in Arabidopsis mutants (lea5) and transgenic Arabidopsis plants constitutively expressing LEA5 (OEX 2-5), as well as in transgenic barley lines expressing the Arabidopsis LEA5 gene. The OEX 2-5 plants grew better than controls and lea5 mutants in the presence of the prooxidants methyl viologen and menadione. Confocal microscopy of Arabidopsis mesophyll protoplasts expressing a LEA5-YFP fusion protein demonstrated that LEA5 could be localized to chloroplasts as well as mitochondria in Arabidopsis protoplasts. Tandem affinity purification (TAP) analysis revealed LEA5 interacts with the chloroplast DEAD-box ATP-dependent RNA helicase 22 (RH22) in Arabidopsis cells. Split YFP analysis confirmed the interaction between RH22 and LEA5 in chloroplasts. The abundance of translated protein products in chloroplasts was decreased in transgenic Arabidopsis plants and increased in lea5 knockout mutants. Conversely, the abundance of translated mitochondrial protein products was increased in OEX 2-5 plants and decreased in lea5 mutants. Mitochondrial electron transport rates were higher in the OEX 2-5 plants than the wild type. The transformed barley lines expressing the Arabidopsis LEA5 had increased seed yields, but they showed a greater drought-induced inhibition of photosynthesis than controls. Taken together, these data demonstrate that LEA5 regulates organellar translation, in order to enhance respiration relative to photosynthesis in response to stress.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nurhayati Razak
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel S. Shaw
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Plumb
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Christine H. Foyer,
| |
Collapse
|
17
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
18
|
Abdul Aziz M, Sabeem M, Mullath SK, Brini F, Masmoudi K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021; 11:1662. [PMID: 34827660 PMCID: PMC8615533 DOI: 10.3390/biom11111662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In response to various environmental stresses, plants have evolved a wide range of defense mechanisms, resulting in the overexpression of a series of stress-responsive genes. Among them, there is certain set of genes that encode for intrinsically disordered proteins (IDPs) that repair and protect the plants from damage caused by environmental stresses. Group II LEA (late embryogenesis abundant) proteins compose the most abundant and characterized group of IDPs; they accumulate in the late stages of seed development and are expressed in response to dehydration, salinity, low temperature, or abscisic acid (ABA) treatment. The physiological and biochemical characterization of group II LEA proteins has been carried out in a number of investigations because of their vital roles in protecting the integrity of biomolecules by preventing the crystallization of cellular components prior to multiple stresses. This review describes the distribution, structural architecture, and genomic diversification of group II LEA proteins, with some recent investigations on their regulation and molecular expression under various abiotic stresses. Novel aspects of group II LEA proteins in Phoenix dactylifera and in orthodox seeds are also presented. Genome-wide association studies (GWAS) indicated a ubiquitous distribution and expression of group II LEA genes in different plant cells. In vitro experimental evidence from biochemical assays has suggested that group II LEA proteins perform heterogenous functions in response to extreme stresses. Various investigations have indicated the participation of group II LEA proteins in the plant stress tolerance mechanism, spotlighting the molecular aspects of group II LEA genes and their potential role in biotechnological strategies to increase plants' survival in adverse environments.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Miloofer Sabeem
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Sangeeta Kutty Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India;
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, Sfax 3018, Tunisia;
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| |
Collapse
|
19
|
CaDHN3, a Pepper ( Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation. Int J Mol Sci 2021; 22:ijms22063205. [PMID: 33809823 PMCID: PMC8004091 DOI: 10.3390/ijms22063205] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/24/2023] Open
Abstract
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.
Collapse
|
20
|
Abstract
With the global climate anomalies and the destruction of ecological balance, the water shortage has become a serious ecological problem facing all mankind, and drought has become a key factor restricting the development of agricultural production. Therefore, it is essential to study the drought tolerance of crops. Based on previous studies, we reviewed the effects of drought stress on plant morphology and physiology, including the changes of external morphology and internal structure of root, stem, and leaf, the effects of drought stress on osmotic regulation substances, drought-induced proteins, and active oxygen metabolism of plants. In this paper, the main drought stress signals and signal transduction pathways in plants are described, and the functional genes and regulatory genes related to drought stress are listed, respectively. We summarize the above aspects to provide valuable background knowledge and theoretical basis for future agriculture, forestry breeding, and cultivation.
Collapse
|
21
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
| |
Collapse
|
22
|
Lv K, Wei H, Liu G. A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 12:791390. [PMID: 34956289 PMCID: PMC8702527 DOI: 10.3389/fpls.2021.791390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Drought stress causes various negative impacts on plant growth and crop production. R2R3-MYB transcription factors (TFs) play crucial roles in the response to abiotic stress. However, their functions in Betula platyphylla haven't been fully investigated. In this study, a R2R3 MYB transcription factor gene, BpMYB123, was identified from Betula platyphylla and reveals its significant role in drought stress. Overexpression of BpMYB123 enhances tolerance to drought stress in contrast to repression of BpMYB123 by RNA interference (RNAi) in transgenic experiment. The overexpression lines increased peroxidase (POD) and superoxide dismatase (SOD) activities, while decreased hydrogen peroxide (H2O2), superoxide radicals (O2 -), electrolyte leakage (EL) and malondialdehyde (MDA) contents. Our study showed that overexpression of BpMYB123 increased BpLEA14 gene expression up to 20-fold due to BpMYB123 directly binding to the MYB1AT element of BpLEA14 promoter. These results indicate that BpMYB123 acts as a regulator via regulating BpLEA14 to improve drought tolerance in birch.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guifeng Liu,
| |
Collapse
|