1
|
Song X, Zhu L, Wang D, Liang L, Xiao J, Tang W, Xie M, Zhao Z, Lai Y, Sun B, Tang Y, Li H. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings. Int J Mol Sci 2023; 24:16337. [PMID: 38003525 PMCID: PMC10671541 DOI: 10.3390/ijms242216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Pepper (Capsicum annuum L.) is sensitive to low temperatures, with low-temperature stress affecting its plant growth, yield, and quality. In this study, we analyzed the effects of exogenous hydrogen sulfide (H2S) on pepper seedlings subjected to low-temperature stress. Exogenous H2S increased the content of endogenous H2S and its synthetase activity, enhanced the antioxidant capacity of membrane lipids, and protected the integrity of the membrane system. Exogenous H2S also promoted the Calvin cycle to protect the integrity of photosynthetic organs; enhanced the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and photosynthesis; and reduced the intercellular CO2 concentration (Ci). Moreover, the activities of superoxide dismutase, peroxidase, catalase, and anti-cyclic glutathione (ASA-GSH) oxidase were improved to decompose excess reactive oxygen species (ROS), enhance the oxidative stress and detoxification ability of pepper seedlings, and improve the resistance to low-temperature chilling injury in 'Long Yun2' pepper seedlings. In addition, the H2S scavenger hypotaurine (HT) aggravated the ROS imbalance by reducing the endogenous H2S content, partially eliminating the beneficial effects of H2S on the oxidative stress and antioxidant defense system, indicating that H2S can effectively alleviate the damage of low temperature on pepper seedlings. The results of transcriptome analysis showed that H2S could induce the MAPK-signaling pathway and plant hormone signal transduction; upregulate the expression of transcription factors WRKY22 and PTI6; induce defense genes; and activate the ethylene and gibberellin synthesis receptors ERF1, GDI2, and DELLA, enhancing the resistance to low-temperature chilling injury of pepper seedlings. The plant-pathogen interaction was also significantly enriched, suggesting that exogenous H2S also promotes the expression of genes related to plant-pathogen interaction. The results of this study provide novel insights into the molecular mechanisms and genetic modifications of H2S that mitigate the hypothermic response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (L.Z.); (D.W.)
| |
Collapse
|
2
|
Al-Huqail AA, Eissa MA, Ghoneim AM, Alsalmi RA, Al Thagafi ZM, Abeed AHA, Tammam SA. Phytoremediation of dinitrophenol from wastewater by atriplex lentiformis: effect of salicylic acid. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1558-1566. [PMID: 36740728 DOI: 10.1080/15226514.2023.2175779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quail bush [Atriplex lentiformis (Torr.) S. Wats] plants were used in removing 2, 4-dinitrophenol (DNP) from wastewater in a hydroponic experiment. The hydroponic system contained three doses of DNP, i.e., 0, 10, and 20 mg L-1. Quail bush plants were sprayed with 0.1 mM salicylic acid (SA) to study its role in resisting DNP toxicity. DNP significantly (p < 0.05) reduced plant growth. Exposure of A. lentiformis plants to 20 mg L-1 of DNP reduced the total chlorophyl and relative water content by 39 and 24%, respectively. SA improved the antioxidant defense in terms of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activities. SA alleviated DNP toxicity by enhancing the production of osmoprotectants, e.g.,proline, phenols, and carbohydrates. SA enhanced the removal efficiency of DNP and the highest removal efficiency (96%) was recorded in the plants sprayed with SA and grown on 10 mg L-1 of DNP. A. lentiformis is a halophytic plant that has good physiological characteristics to resist 2, 4-dinitrophenol toxicity in wastewaters and is qualified to purify water from these harmful compounds. Exogenous application of 0.1 mM SA increased the defense system in A. lentiformis against 2, 4-dinitrophenol toxicity and enhanced the removal efficiency.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mamdouh A Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, Egypt
| | - Reem A Alsalmi
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | | | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Suzan A Tammam
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Bilal S, Shahzad R, Asaf S, Imran M, Al-Harrasi A, Lee IJ. Efficacy of endophytic SB10 and glycine betaine duo in alleviating phytotoxic impact of combined heat and salinity in Glycine max L. via regulation of redox homeostasis and physiological and molecular responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120658. [PMID: 36379292 DOI: 10.1016/j.envpol.2022.120658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adverse environmental stresses occurring simultaneously exhibit a lethal effect on crop productivity at the global level. Here, we investigated the individual and synergistic effects of endophytic T. virens SB10 and glycine betaine (GB) on the physiological and biochemical responses of Glycine max L. to alleviate the devastating effects of combined heat and salinity (HS) stress. Screening against HS stress tolerance showed that SB10 has significant tolerance against heat stress and produces hormones such as gibberellins and indole-3-acetic acid upon GB amendment of the growth medium under HS stress. Moreover, the current findings illustrated that the synergistic application of SB10 and GB was effective in alleviating the negative effects of HS stress on plant growth and physiology. The findings revealed that SB10 + GB led to a reduction in proline accumulation and Na+ uptake. It also maintained a high K+/Na + ratio by regulating GmHKT1 and GmSOS1 expression and enhanced macronutrient uptake (N, Ca, K) in plants. In turn, plants exhibited a higher growth rate and gaseous exchange attributes coupled with the upregulation of APX, SOD, POD, and GSH antioxidant activities and transcript accumulation of GmSOD1 and GmAPX1 to overcome HS-induced oxidative damage. Furthermore, SB10 + GB downregulated DREB2, DREB1B, and GmNCED3 expression and resulted in the reduced accumulation of endogenous ABA while enhancing endogenous SA accumulation via upregulation of PAL genes. In addition, enhanced accumulation of bioactive gibberellins (GA1, GA3, GA4, and GA7) was detected under HS stress in the SB10 + GB treatment group. Moreover, SB10 + GB also significantly regulated GmHsp90A2 and GmHsfA2 expression in tolerance against HS stress. The combination of SB10 and GB was shown to be an effective and alternative approach for growing G. max at high temperature coupled with saline conditions for sustainable agriculture.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, 22620, Khyber Pakhtunkhwa, Pakistan.
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Wu Q, Jing HK, Feng ZH, Huang J, Shen RF, Zhu XF. Salicylic Acid Acts Upstream of Auxin and Nitric Oxide (NO) in Cell Wall Phosphorus Remobilization in Phosphorus Deficient Rice. RICE (NEW YORK, N.Y.) 2022; 15:42. [PMID: 35920901 PMCID: PMC9349334 DOI: 10.1186/s12284-022-00588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA) is thought to be involved in phosphorus (P) stress response in plants, but the underlying molecular mechanisms are poorly understood. Here, we showed that P deficiency significantly increased the endogenous SA content by inducing the SA synthesis pathway, especially for up-regulating the expression of PAL3. Furthermore, rice SA synthetic mutants pal3 exhibited the decreased root and shoot soluble P content, indicating that SA is involved in P homeostasis in plants. Subsequently, application of exogenous SA could increase the root and shoot soluble P content through regulating the root and shoot cell wall P reutilization. In addition, - P + SA treatment highly upregulated the expression of P transporters such as OsPT2 and OsPT6, together with the increased xylem P content, suggesting that SA also participates in the translocation of the P from the root to the shoot. Moreover, both signal molecular nitric oxide (NO) and auxin (IAA) production were enhanced when SA is applied while the addition of respective inhibitor c-PTIO (NO scavenger) and NPA (IAA transport inhibitor) significantly decreased the root and shoot cell wall P remobilization in response to P starvation. Taken together, here SA-IAA-NO-cell wall P reutilization pathway has been discovered in P-starved rice.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Kang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hang Feng
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657, Japan
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren-Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants' Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:1620. [PMID: 35807572 PMCID: PMC9269229 DOI: 10.3390/plants11131620] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Water, a necessary component of cell protoplasm, plays an essential role in supporting life on Earth; nevertheless, extreme changes in climatic conditions limit water availability, causing numerous issues, such as the current water-scarce regimes in many regions of the biome. This review aims to collect data from various published studies in the literature to understand and critically analyze plants' morphological, growth, yield, and physio-biochemical responses to drought stress and their potential to modulate and nullify the damaging effects of drought stress via activating natural physiological and biochemical mechanisms. In addition, the review described current breakthroughs in understanding how plant hormones influence drought stress responses and phytohormonal interaction through signaling under water stress regimes. The information for this review was systematically gathered from different global search engines and the scientific literature databases Science Direct, including Google Scholar, Web of Science, related studies, published books, and articles. Drought stress is a significant obstacle to meeting food demand for the world's constantly growing population. Plants cope with stress regimes through changes to cellular osmotic potential, water potential, and activation of natural defense systems in the form of antioxidant enzymes and accumulation of osmolytes including proteins, proline, glycine betaine, phenolic compounds, and soluble sugars. Phytohormones modulate developmental processes and signaling networks, which aid in acclimating plants to biotic and abiotic challenges and, consequently, their survival. Significant progress has been made for jasmonates, salicylic acid, and ethylene in identifying important components and understanding their roles in plant responses to abiotic stress. Other plant hormones, such as abscisic acid, auxin, gibberellic acid, brassinosteroids, and peptide hormones, have been linked to plant defense signaling pathways in various ways.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saqib Ullah
- Department of Botany, Islamia College, Peshawar 25120, Pakistan;
| | - Wadood Shah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan;
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022; 29:1337-1347. [PMID: 35280588 PMCID: PMC8913376 DOI: 10.1016/j.sjbs.2022.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/24/2023] Open
Abstract
Abiotic stress causes extensive loss to agricultural yield production worldwide. Salt stress is one of them crucial factor which leads to decreased the agricultural production through detrimental effect on growth and development of crops. In our study, we examined the effect of a defense growth substance, salicylic acid (SA 1 mM) on mature vegetative (60 Days after sowing) and flowering (80 DAS) stage of Pusa Sadabahar (PS) variety of Capsicum annuum L. plants gown under different concentrations of NaCl (25, 50, 75, 100 and 150 mM) and maintained in identical sets in pots during the whole experiment. Physiological studies indicated that increase in root & shoot length, fresh & dry weight, number of branches per plant, and yield (number of fruits per plant) under salt + SA treatment. Biochemical studies, enzymatic antioxidants like CAT, POX, and non-enzymatic antioxidant such as ascorbic acid (AsA content), carotenoids, phenolics, besides other defense compounds like proline, protein, chlorophyll contents were studied at 10 days after treatment at the mature vegetative and flowering stage. The addition of SA led to lowering of in general, all studied parameters in the mature vegetative stage but increased the same during the flowering stage, especially in the presence of NaCl; although the control I (without SA and NaCl) remained lower in value than control II (with SA, without NaCl). Interestingly, total phenolics were higher in control I (without SA or NaCl) whereas chlorophylls were higher in treatments with SA and NaCl. Thus, physiological concentration of SA (1 mM) appears to be significantly effective against salt stress during the flowering stage. In addition, during the mature vegetative stage, however, proline accumulates in SA treated sets, to help in developing NaCl-induced drought stress tolerance.
Collapse
|
7
|
Modulation of salt-induced stress impact in Gladiolus grandiflorus L. by exogenous application of salicylic acid. Sci Rep 2021; 11:15597. [PMID: 34341425 PMCID: PMC8329058 DOI: 10.1038/s41598-021-95243-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Salinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world's cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m-1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50-200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.
Collapse
|