1
|
Wang X, Qian D, Xu L, Zhao C, Ma X, Han C, Mu Y. Green synthesis of AgNPs and their application in chitosan/polyvinyl alcohol/AgNPs composite sponges with efficient antibacterial activity for wound healing. Int J Biol Macromol 2025; 309:142935. [PMID: 40210066 DOI: 10.1016/j.ijbiomac.2025.142935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Wound infections can cause inflammation and delay healing, which becomes an important obstacle to wound recovery. To overcome this issue, various antibacterial agents have been integrated into wound dressings to prevent infection. Silver nanoparticles (AgNPs) are promising candidates due to their broad-spectrum antibacterial activities and no drug resistance. In this study, Dio-AgNPs were initially obtained by biological synthesis using the flavonoid compound diosmetin (Dio) as a reducing and capping agent. Dio-AgNPs exhibited strong antibacterial activity against S. aureus and E. coli by destroying the bacterial membrane structure and inducing the production of reactive oxygen species (ROS), finally leading to bacterial death. Furthermore, the composite sponges (SP-1, SP-2, and SP-3) for preventing wound infection were formulated using chitosan (CS) and polyvinyl alcohol (PVA) with different concentrations of Dio-AgNPs incorporated. The prepared sponges exhibited interconnected porous structures with water absorption capacities of >33 times their own weight. The wound healing experiments showed that after 14 days, the SP-3 sponge promoted complete wound healing by preventing wound infection, which is comparable to the commercial AgNPs gauze materials. SP-3 sponge also showed good biosafety. This work prepared a novel SP-3 sponge, which offers an effective and safe alternative for treating wound infections.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Dandan Qian
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Lihuan Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Chenhao Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China
| | - Xiaoli Ma
- College of Nursing, Hebei University, Baoding 071000, PR China
| | - Changbao Han
- Key Laboratory of Advanced Functional Materials (Beijing University of Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yajuan Mu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071000, PR China.
| |
Collapse
|
2
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
3
|
Sarkar S, Banerjee A, Bandopadhyay R. Bacterial Polysaccharide-Stabilized Silver Nanoparticles Photocatalytically Decolorize Azo Dyes. Appl Biochem Biotechnol 2024; 196:2466-2486. [PMID: 37477844 DOI: 10.1007/s12010-023-04648-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Bacterial polysaccharide is advantageous over plant, algal, and fungal polysaccharides in terms of stability, non-toxicity, and biodegradable nature. In addition, bacterial cell wall polysaccharide (CPs) is very little explored compared to exopolysaccharide. In this study, CPs have been isolated from thermotolerant Chryseobacterium geocarposphaerae DD3 (CPs3) from textile industry dye effluent. Structural characterization of the CPs was done by different techniques, viz., scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA). CPs3 demonstrated compact non-porous amorphous surface composed of evenly distributed macromolecular lumps. TGA revealed a high thermostability (~ 350 °C) of the polysaccharide. FTIR and NMR confirm the polysaccharidic nature of the polymer, consisting of glucose units linked by both β-(1 → 3) and β-(1 → 4) glycosidic bonds. The functional properties of CPs3 were evaluated for industrial use as additive, especially antibacterial, emulsification, and flocculation capacities. A single-step green synthesis of silver nanoparticle (AgNP) was performed using CPs3. AgNP was characterized using ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), AFM, and particle size analyses. The CPs3-stabilized AgNP exhibited potential photocatalytic activity against a broad range of azo dyes, congo red (88.33 ± 0.48%), methyl red (76.81 ± 1.03%), and malachite green (47.34 ± 0.90%) after only 3 h of reaction. According to our knowledge, this is the first report on CPs from C. geocarposphaerae. The results demonstrated multifunctionality of CPs3 in both prospective, CPs3 as additive in biotechnology industry as well as Cps3-stabilized AgNP for bioremediation of azo dye.
Collapse
Affiliation(s)
- Shrabana Sarkar
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación Y Postgrado, Universidad Católica del Maule, 3466706, Talca, Chile
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, 3467987, Talca, Chile
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
4
|
Hassan Afandy H, Sabir DK, Aziz SB. Antibacterial Activity of the Green Synthesized Plasmonic Silver Nanoparticles with Crystalline Structure against Gram-Positive and Gram-Negative Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1327. [PMID: 37110913 PMCID: PMC10141010 DOI: 10.3390/nano13081327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles (NPs) have attracted considerable interest in numerous fields, including agriculture, medicine, the environment, and engineering. The use of green synthesis techniques that employ natural reducing agents to reduce metal ions and form NPs is of particular interest. This study investigates the use of green tea (GT) extract as a reducing agent for the synthesis of silver NPs (Ag NPs) with crystalline structure. Several analytical techniques, including UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD), were used to characterize the synthesized Ag NPs. The results of UV-vis revealed that the biosynthesized Ag NPs exhibited an absorbance plasmonic resonance peak at 470 nm. According to FTIR analyses, the attachment of Ag NPs to polyphenolic compounds resulted in a decrease in intensity and band shifting. In addition, the XRD analysis confirmed the presence of sharp crystalline peaks associated with face-centered cubic Ag NPs. Moreover, HR-TEM revealed that the synthesized particles were spherical and 50 nm in size on average. The Ag NPs demonstrated promising antimicrobial activity against Gram-positive (GP) bacteria, Brevibacterium luteolum and Staphylococcus aureus, and Gram-negative (GN) bacteria, Pseudomonas aeruginosa and Escherichia coli, with a minimal inhibitory concentration (MIC) of 6.4 mg/mL for GN and 12.8 mg/mL for GP. Overall, these findings suggest that Ag NPs can be utilized as effective antimicrobial agents.
Collapse
Affiliation(s)
- Hemn Hassan Afandy
- Department of Physics, College of Science, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
| | - Dana Khdr Sabir
- Department of Biology, Charmo Center for Research, Training and Consultancy, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
- Department of Medical Laboratory Sciences, College of Science, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional, Iraq
- Development Center for Research and Training (DCRT), University of Human Development, Sulaymaniyah 46001, Kurdistan Regional, Iraq
| |
Collapse
|
5
|
Benetis NP, Paloncýová M, Knippenberg S. Multiscale Modeling Unravels the Influence of Biomembranes on the Photochemical Properties of Embedded Anti-Oxidative Polyphenolic and Phenanthroline Chelating Dyes. J Phys Chem B 2023; 127:212-227. [PMID: 36563093 DOI: 10.1021/acs.jpcb.2c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The embedding of caffeate methyl ester, the flavonoids luteolin and quercetin, and the o-phenanthroline and neocuproine in a liquid disordered lipid bilayer has been studied through extensive atomistic calculations. The location and the orientation of these bio-active antioxidants are explained and analyzed. While the two phenanthrolines strongly associate with the lipid tail region, the other three compounds are rather found among the head groups. The simulations showcase conformational changes of the flavonoids. Through the use of a hybrid quantum mechanics-molecular mechanics scheme and supported by a profound benchmarking of the electronic excited-state method for these compounds, the influence of the anisotropic environment on the compounds' optical properties is analyzed. Influences of surrounding water molecules and of the polar parts of the lipids on the transition dipole moments and excited-state dipole moments are weighted with respect to a change in conformation. The current study highlights the importance of the mapping of molecular interactions in model membranes and pinpoints properties, which can be biomedically used to discriminate and detect different lipid environments.
Collapse
Affiliation(s)
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 8, Olomouc779 00, Czech Republic
| | - Stefan Knippenberg
- Hasselt University, Theory Lab, Agoralaan Building D, 3590Diepenbeek, Belgium.,Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 160/09, B-1050Brussels, Belgium
| |
Collapse
|
6
|
Kubavat K, Trivedi P, Ansari H, Kongor A, Panchal M, Jain V, Sindhav G. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dietary and wholesome antioxidant rutin is considered advantageous due to its potential protective role for numerous diseases related to oxidative stress, high safety, cost-effectiveness, and extensive biological effects. The present study accounts for an expeditious method for the synthesis of silver nanoparticles (AgNPs) using rutin.
Results
The presence of AgNPs was affirmed by UV–visible spectroscopy at 425 nm, and FESEM and zeta sizer analysis revealed the average size of the AgNPs 80–85 nm and 160 d.nm, respectively. Zeta potential measurements (− 30.3 mV) showed that the AgNPs have reasonably good stability. Element mapping analysis of the AgNPs was confirmed by XRD and AFM, while FTIR spectra of the AgNPs showed the existence of functional groups. In the DPPH assay, highest radical scavenging activity of AgNPs, 86.95 ± 01.60%, was confirmed. The interaction of AgNPs with CT-DNA and HS-DNA was studied spectrophotometrically, and the data display a shift in the respective spectra. Furthermore, interaction with pBR322 DNA, λ DNA, CT-DNA, and HS-DNA was deliberated by a nicking assay that shows the physicochemical properties of AgNPs. Antibacterial activity was evaluated by the standard well-diffusion method against Escherichia coli and Staphylococcus aureus, and cytotoxicity was assessed against human WBCs by MTT assay.
Conclusion
As per this appraisal, it can be concluded that it is a cost-effective, simple, and eco-friendly tactic and such NPs are beneficial to improve therapeutics since the antioxidant, DNA interaction, antibacterial, and cytotoxic exploits offer a new horizon of euthenics.
Collapse
|
7
|
Wei S, Liu X, Xie J, Liu H, Zeng Q, wang G, Luo P. Biosynthesis of novel metallic silvers on kraft papers using cephalotaxus harringtonia fruit extract as a sustainable stabilizing agent (KP@AgNP). Front Bioeng Biotechnol 2022; 10:967166. [PMID: 36032732 PMCID: PMC9399674 DOI: 10.3389/fbioe.2022.967166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Greenly synthesized silver nanoparticles (AgNPs) on different cellulosic materials show tremendous potential for colorful, biocidal, and reasonably strong products by replacing the traditional chemical-based synthesis protocols. This study reports on a novel in situ synthesis protocol for synthesizing green and sustainable AgNPs over cellulosic kraft paper substrates using a bio-based stabilizing agent (Cephalotaxus harringtonia fruit extract). The protocol could play a significant role in packaging industries. The aqueous extracts of Cephalotaxus harringtonia fruits have been used to synthesize the metallic silver. The deposited AgNPs values were investigated through XRF (X-ray fluorescence) analysis. The number of deposited nanoparticles (NPs) was 268 ± 7, 805 ± 14, and 1,045 ± 16 PPM, respectively for 0.5, 1.5, and 2.5 mm silver precursors. The developed products were tested with SEM (scanning electron microscopy), SEM-mediated elemental mapping, EDX (energy disruptive X-ray), FTIR (Fourier transform infrared spectroscopy), and XRD (X-Ray diffraction). XRD analysis further confirmed the presence of peaks for elemental AgNP on the deposited papers. Colorimetric values were measured to confirm the colorful appearances of the developed metallic silvers. Mechanical properties were tested in terms of the tensile index and bursting index. Moreover, the statistical analysis of coefficient of variations (R2) and a post-hoc ANOVA test that adopted the Newman-Keul methodology also confirm the significance of developed nanoparticles in the papers. The shielding capacity against UV light was also investigated; all the AgNPs-treated products provided values higher than 40, demonstrating the strong UV resistance capability of the kraft paper material. Overall, the study confirms a successful development of green AgNPs on paper materials.
Collapse
Affiliation(s)
- Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | | | | | | | | | | | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Zhao X, Deng Y, Xue X, Liao L, Zhou M, Peng C, Li Y. Research Progress of Quercetin Delivery Systems. Curr Pharm Des 2022; 28:727-742. [PMID: 35301946 DOI: 10.2174/1381612828666220317141923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Quercetin is the main dietary flavonoid with a wide range of pharmacological activities. However, the poor gastrointestinal absorption and low bioavailability of quercetin curtails its clinical applications.. Enhancement the bioavailability of quercetin focuses on the application of delivery systems technologies such as microparticle delivery systems, solid dispersions, encapsulation, phospholipid complexes, and hydrogels , which have been systematically reviewed .And theirapplications in vitro and in vivo animal experiments also been described, promoting the development and optimization of drug delivery system for clinical applications.
Collapse
Affiliation(s)
- Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Li Liao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources
| |
Collapse
|
10
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
11
|
Shahid-ul-Islam, Butola B, Kumar A. Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate. Int J Biol Macromol 2020; 152:1135-1145. [DOI: 10.1016/j.ijbiomac.2019.10.202] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
|
12
|
Zhu S, Shen Y, Yu Y, Bai X. Synthesis of antibacterial gold nanoparticles with different particle sizes using chlorogenic acid. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191141. [PMID: 32269782 PMCID: PMC7137950 DOI: 10.1098/rsos.191141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/06/2020] [Indexed: 05/07/2023]
Abstract
This study proposes a strategy for the rapid and simple synthesis of gold nanoparticles (CGA-AuNPs) with different particle sizes using trisodium citrate (TSC) as the first reducing agent and chlorogenic acid (CGA) as the second reducing agent. And the antibacterial activity of CGA-AuNPs with different particle sizes in vitro was checked by measuring the growth curves of Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923). The CGA-AuNPs obtained by the analysis of transmission electron microscope (TEM) images and ultraviolet-visible (UV-Vis) spectra were mainly spherical, and the average diameters were 18.94 ± 1.81, 30.42 ± 6.32, 37.86 ± 3.80 and 48.72 ± 6.47 nm, respectively. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) showed that these nanoparticles were polycrystalline gold structures. Both CGA-AuNPs and CGA have excellent antibacterial activity, and CGA-AuNPs with small particle size has a stronger antibacterial effect than the larger one. UV-Vis absorption spectrum data revealed that the synthesized CGA-AuNPs without adding other stabilizing agent were well maintained even after 26 days. This work provides a special idea to regulate the size of CGA-AuNPs with CGA by chemical synthesis, and the potent antibacterial activity of these CGA-AuNPs may be applied in the field of antibacterial in the future.
Collapse
Affiliation(s)
- Sujuan Zhu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A. One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 2020; 10:1762. [PMID: 32020015 PMCID: PMC7000682 DOI: 10.1038/s41598-020-58697-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 μM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, USA
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
B Aziz S, Hussein G, Brza MA, J Mohammed S, T Abdulwahid R, Raza Saeed S, Hassanzadeh A. Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1557. [PMID: 31684041 PMCID: PMC6915396 DOI: 10.3390/nano9111557] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022]
Abstract
Interconnected spherical metallic silver nanoparticles (Ag NPs) were synthesized in the current study using a green chemistry method. The reduction of silver ions to Ag NPs was carried out with low-cost and eco-friendly quince leaves. For the first time, it was confirmed that the extract solution of quince leaves could be used to perform green production of Ag NPs. Fourier transform infrared spectroscopy (FTIR) was conducted to identify the potential biomolecules that were involved in the Ag NPs. The results depicted that the biosynthesis of Ag NPs through the extract solution of quince leaf was a low-cost, clean, and safe method, which did not make use of any contaminated element and hence, had no undesirable effects. The majority of the peaks in the FTIR spectrum of quince leaf extracts also emerged in the FTIR spectrum of Ag NPs but they were found to be of less severe intensity. The silver ion reduction was elaborated in detail on the basis of the FTIR outcomes. In addition, through X-ray diffraction (XRD) analysis, the Ag NPs were also confirmed to be crystalline in type, owing to the appearance of distinct peaks related to the Ag NPs. The creation of Ag NPs was furthermore confirmed by using absorption spectrum, in which a localized surface plasmon resonance (LSPR) peak at 480 nm was observed. The LSPR peak achieved in the present work was found to be of great interest compared to those reported in literature. Field emission scanning electron microscopy (FESEM) images were used to provide the morphology and grain size of Ag NPs. It was shown from the FESEM images that the Ag NPs had interconnected spherical morphology.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani 46001, Iraq.
| | - Govar Hussein
- Department of Physics, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - M A Brza
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia.
| | - Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
| | - R T Abdulwahid
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq.
| | - Salah Raza Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46001, Iraq.
| | | |
Collapse
|
15
|
Adsorption, Antibacterial and Antioxidant Properties of Tannic Acid on Silk Fiber. Polymers (Basel) 2019; 11:polym11060970. [PMID: 31163623 PMCID: PMC6631107 DOI: 10.3390/polym11060970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds have received increasing attention in the functional modification of textiles. In this work, tannic acid was used to impart antibacterial and antioxidant functions to silk using an adsorption technique, and the adsorption properties of tannic acid on silk were studied. The adsorption quantity of tannic acid on silk increased with decreasing pH in the range of 3–7. The rates of the uptake of tannic acid by silk were well correlated to the pseudo-second-order kinetic model, and the calculated activation energy of adsorption was 93.49 kJ/mol. The equilibrium adsorption isotherms followed the Langmuir model. The adsorption rate and isotherm studies demonstrated that the chemical adsorption of tannic acid on silk occurred through the ion-ion interaction between tannic acid and silk. Tannic acid displayed good building-up properties on silk. The silk fabric treated with 0.5% tannic acid (relative to fabric weight) exhibited excellent and durable antibacterial properties. Moreover, the silk fabrics treated with 2% and 5% tannic acid had good and durable antioxidant properties. The treatment by tannic acid had less impact on the whiteness of the silk fabric. In summary, tannic acid can be used as a functional agent for preparing healthy and hygienic silk materials.
Collapse
|