1
|
Hassanen EI, Hassan NH, Mehanna S, Hussien AM, Ibrahim MA, Mohammed FF, Farroh KY. Oral supplementation of curcumin-encapsulated chitosan nanoconjugates as an innovative strategy for mitigating nickel-mediated hepatorenal toxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03799-4. [PMID: 39836252 DOI: 10.1007/s00210-025-03799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs. After 30 days, blood and tissue (liver and kidneys) were collected to measure hepatorenal biomarkers, oxidant/antioxidant balance, inflammatory gene expression, liver and kidney histopathology, and immunohistochemistry. Results revealed disruption of hepatorenal functions, oxidative stress, and inflammatory markers at biochemical and molecular levels associated with severe hepatorenal histopathological alterations and abnormal immunohistochemical tissue expression for caspase-3 and cyclooxygenase-2. On the contrary, the treatment of Ni-intoxicated rats with CS/CU NCs markedly mitigated the adverse effect of Ni on hepatorenal tissue via regulation of oxidative stress, inflammatory, and apoptotic markers. The present study provides a novel nanoformulation for curcumin using CS NPs encapsulation that selectively targets the injured cells and improves the beneficial effect of CU via enhancing the antioxidant activity and regulating both inflammatory and apoptotic markers.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sally Mehanna
- Department of Biotechnology, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Cairo, Egypt
| | - Ahmed M Hussien
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Hofuf, Al Ahsa, Saudi Arabia
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab., Agricultural Research Center, Giza, Egypt
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
2
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
3
|
Wu Z, Li L, Xu T, Hu Y, Peng X, Zhang Z, Yao X, Peng Q. Elucidating the multifaceted roles of GPR146 in non-specific orbital inflammation: a concerted analytical approach through the prisms of bioinformatics and machine learning. Front Med (Lausanne) 2024; 11:1309510. [PMID: 38903815 PMCID: PMC11188444 DOI: 10.3389/fmed.2024.1309510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Non-specific Orbital Inflammation (NSOI) is a chronic idiopathic condition marked by extensive polymorphic lymphoid infiltration in the orbital area. The integration of metabolic and immune pathways suggests potential therapeutic roles for C-peptide and G protein-coupled receptor 146 (GPR146) in diabetes and its sequelae. However, the specific mechanisms through which GPR146 modulates immune responses remain poorly understood. Furthermore, the utility of GPR146 as a diagnostic or prognostic marker for NSOI has not been conclusively demonstrated. Methods We adopted a comprehensive analytical strategy, merging differentially expressed genes (DEGs) from the Gene Expression Omnibus (GEO) datasets GSE58331 and GSE105149 with immune-related genes from the ImmPort database. Our methodology combined LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) for feature selection, followed by Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) to explore gene sets co-expressed with GPR146, identifying a significant enrichment in immune-related pathways. The tumor microenvironment's immune composition was quantified using the CIBERSORT algorithm and the ESTIMATE method, which confirmed a positive correlation between GPR146 expression and immune cell infiltration. Validation of GPR146 expression was performed using the GSE58331 dataset. Results Analysis identified 113 DEGs associated with GPR146, with a significant subset showing distinct expression patterns. Using LASSO and SVM-RFE, we pinpointed 15 key hub genes. Functionally, these genes and GPR146 were predominantly linked to receptor ligand activity, immune receptor activity, and cytokine-mediated signaling. Specific immune cells, such as memory B cells, M2 macrophages, resting mast cells, monocytes, activated NK cells, plasma cells, and CD8+ T cells, were positively associated with GPR146 expression. In contrast, M0 macrophages, naive B cells, M1 macrophages, activated mast cells, activated memory CD4+ T cells, naive CD4+ T cells, and gamma delta T cells showed inverse correlations. Notably, our findings underscore the potential diagnostic relevance of GPR146 in distinguishing NSOI. Conclusion Our study elucidates the immunological signatures associated with GPR146 in the context of NSOI, highlighting its prognostic and diagnostic potential. These insights pave the way for GPR146 to be a novel biomarker for monitoring the progression of NSOI, providing a foundation for future therapeutic strategies targeting immune-metabolic pathways.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Tingting Xu
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yi Hu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Peng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zheyuan Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaolei Yao
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Arab FL, Hoseinzadeh A, Mohammadi FS, Rajabian A, Faridzadeh A, Mahmoudi M. Immunoregulatory effects of nanocurcumin in inflammatory milieu: Focus on COVID-19. Biomed Pharmacother 2024; 171:116131. [PMID: 38198954 DOI: 10.1016/j.biopha.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The use of natural compounds, such as curcumin, to treat infections caused by bacteria, viruses, fungi, parasites, inflammatory diseases, and various types of cancer is an active and dynamic area of research. Curcumin has a long history of use in the food industry, and there is currently a growing interest in its therapeutic applications. Numerous clinical trials have consistently shown that curcumin, a polyphenolic compound, is safe and well-tolerated even at high doses. There is no toxicity limit. However, the clinical efficacy of curcumin has been limited by its constraints. However, scientific evidence indicates that the use of adjuvants and carriers, such as nanoparticles, exosomes, micelles, and liposomes, can help overcome this limitation. The properties, functions, and human benefits of using nanocurcumin are well-supported by scientific research. Recent evidence suggests that nanocurcumin may be a beneficial therapeutic modality due to its potential to decrease gene expression and secretion of specific inflammatory biomarkers involved in the cytokinestorm seen in severe COVID-19, as well as increase lymphocyte counts. Nanocurcumin has demonstrated the ability to improve clinical manifestations and modulate immune response and inflammation in various autoinflammatory diseases. Additionally, its efficacy, affordability, and safety make it a promising replacement for residual cancer cells after tumor removal. However, further studies are necessary to evaluate the safety and efficacy of nanocurcumin as a new therapeutic in clinical trials, including appropriate dosage, frequency, and duration.
Collapse
Affiliation(s)
- Fahimeh Lavi Arab
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Akram Hoseinzadeh
- Immunology Research Center, Bu‑Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Chang Y, Wang Q, Huang J, Luo X, Huang Y, Wu Y, Chen P, Zheng Y. Curcumin-Loaded Bamboo Shoot Cellulose Nanofibers: Characterization and In Vitro Studies. Foods 2023; 12:3512. [PMID: 37761221 PMCID: PMC10528234 DOI: 10.3390/foods12183512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Given its high biological and pharmacological activities, curcumin (CUR) offers promising applications in functional foods. However, its low stability and bioavailability have greatly hindered its application in the food industry. The present study prepared cellulose nanofiber (CNF) from bamboo shoot processing byproducts and investigated its potential as a low-cost carrier. Our results showed that CUR was immobilized on CNF surfaces mainly through hydrogen bonding and eventually encapsulated in CNF matrices, forming a CNF-CUR complex with an encapsulation efficiency of 88.34% and a loading capacity of 67.95%. The CUR encapsulated in the complex showed improved stability after thermal and UV light treatments. Moreover, a slow and extended release pattern of CUR in a simulated gastrointestinal tract was observed, which could be appropriately described using the Korsmeyer-Peppas model. These results revealed that CNF is a promising protective carrier for the slow release of CUR, making it a better candidate for functional foods.
Collapse
Affiliation(s)
- Yu Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Q.W.); (J.H.)
| | - Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Q.W.); (J.H.)
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yajuan Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yirui Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Peng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| |
Collapse
|
6
|
Iranshahy M, Hanafi-Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S, Filosa R, Nezhad IF, Hasanpour M. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review. RSC Adv 2023; 13:22250-22267. [PMID: 37492509 PMCID: PMC10363773 DOI: 10.1039/d3ra02772d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Curcumin-loaded mesoporous silica nanoparticles (MSNs) have shown promise as drug delivery systems to address the limited pharmacokinetic characteristics of curcumin. Functionalization with folic acid and PEGylation enhance anticancer activity, biocompatibility, stability, and permeability. Co-delivery with other drugs results in synergistically enhanced cytotoxic activity. Environment-responsive MSNs prevent undesirable drug leakage and increase selectivity towards target tissues. This review summarizes the methods of Cur-loaded MSN synthesis and functionalization and their application in various diseases, and also highlights the potential of Cur-loaded MSNs as a promising drug delivery system.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera 82030 San Salvatore Telesino BN Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE) Brazil
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologie, Università Degli Studi Del Sannio Benevento Italy
| | - Iman Farzam Nezhad
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad Mashhad Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
7
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EBA, Moklas MAM, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles ameliorates lead-induced neurotoxicity in rats via attenuation of oxidative stress. Food Sci Nutr 2023; 11:2211-2231. [PMID: 37181299 PMCID: PMC10171497 DOI: 10.1002/fsn3.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
A substantial global health burden is associated with neurotoxicity caused by lead (Pb) exposure and the common mechanism of this toxicity is mainly via oxidative damage. Curcumin has remarkable pharmacological activities but remains clinically constrained due to its poor bioavailability when orally administered. Currently, cockle shell-derived calcium carbonate nanoparticle (CSCaCO3NP) is gaining more acceptance in nanomedicine as a nanocarrier to various therapeutics. This study aimed at investigating the ameliorative effect of curcumin-loaded CSCaCO3NP (Cur-CSCaCO3NP) on lead-induced neurotoxicity in rats. A total of 36 male Sprague-Dawley rats were randomly assigned into five groups. Each group consists of 6 rats apart from the control group which consists of 12 rats. During the 4 weeks induction phase, all rats received a flat dose of 50 mg/kg of lead while the control group received normal saline. The treatment phase lasted for 4 weeks, and all rats received various doses of treatments as follows: group C (Cur 100) received 100 mg/kg of curcumin, group D (Cur-CSCaCO3NP 50) received 50 mg/kg of Cur-CSCaCO3NP, and group E (Cur-CSCaCO3NP 100) received 100 mg/kg of Cur-CSCaCO3NP. The motor function test was carried out using the horizontal bar method. The cerebral and cerebellar oxidative biomarker levels were estimated using ELISA and enzyme assay kits. Lead-administered rats revealed a significant decrease in motor scores and SOD activities with a resultant increase in MDA levels. Furthermore, marked cellular death of the cerebral and cerebellar cortex was observed. Conversely, treatment with Cur-CSCaCO3NP demonstrated enhanced ameliorative effects when compared with free curcumin treatment by significantly reversing the aforementioned alterations caused by lead. Thus, CSCaCO3NP enhanced the efficacy of curcumin by ameliorating the lead-induced neurotoxicity via enhanced attenuation of oxidative stress.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy College of Medicine Federal University Lafia Lafia Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy College of Medicine Federal University Lafia Lafia Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
- Department of Human Anatomy, Faculty of Basic Medical Sciences University of Maiduguri Maiduguri Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine Usman Danfodiyo University Sokoto Nigeria
| | - Tawfiq Y T Zyoud
- Department of Radiology, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences University Putra Malaysia Serdang Malaysia
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine University Putra Malaysia Serdang Malaysia
| |
Collapse
|
8
|
Zhang Z, Sun Y, Wang H, Yang Y, Dong R, Xu Y, Zhang M, Lv Q, Chen X, Liu Y. Melatonin pretreatment can improve the therapeutic effect of adipose-derived stem cells on CCl 4-induced liver fibrosis. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2191263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Damayanti IP, Susilaningsih N, Nugroho T, Suhartono S, Suryono S, Susanto H, Suwondo A, Mahati E. The Effect of Curcumin Nanoparticles on Paracetamol-induced Liver Injury in Male Wistar Rats. Pharm Nanotechnol 2023; 11:493-503. [PMID: 37264664 DOI: 10.2174/2211738511666230601105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Curcumin is a naturally occurring compound that has antioxidant properties, acts as a hepatoprotective, and lowers lipid peroxidation. However, curcumin's low solubility and bioavailability are its primary drawbacks and prevent its use as a therapeutic agent. In this study, curcumin nanoparticles will be created using the ultrasonic-assisted extraction method, and their effectiveness against paracetamol-induced changes in ALT, AST, SOD, MDA, and TNF-α will be compared to that of pure curcumin. PURPOSE This study aimed to determine the hepatoprotective effect of curcumin nanoparticles in paracetamol- induced rats as a model for liver injury. METHODS Thirty-six male Wistar rats, aged 6 to 8 weeks, with a minimum weight of 120 grams, were used in an experimental laboratory investigation with a post-test-only group design. Rats in each group received 100 mg/kgBW pure curcumin, 100 mg/kgBW curcumin nanoparticles, and 50 mg/kgBW curcumin nanoparticles for 7 days before paracetamol induction. On day 8, 300 mg/kgBW of paracetamol was intraperitoneally injected to cause liver damage. One of the groups received NAC as an antidote 10 hours after paracetamol induction. Detection of ALT and AST using a Chemistry Analyzer. ELISA approach for the detection of SOD, MDA, and TNF-α. The Roenigk score was calculated by two examiners after the liver histopathology preparations were stained using the Hematoxylin-Eosin method. Post hoc analyses were performed after the One Way Annova and Kruskal Wallis tests to examine the data. RESULTS According to PSA results, the smallest formula that formed curcumin nanoparticles (10.2 nm) was 8 g of curcumin formula mixed with a mixture of Tween 20 4.5 ml, Kolliphor EL 1.5 ml, Propylene Glycol 1.5 ml, and Capryol 90 1 ml for 21 minutes using an ultrasonic process. MDA and TNF-α levels, as well as the liver's histological Roenigk score, were significantly lower in the 100 mg/kgBB pure curcumin group (C100) when compared to the model group (model). The levels of AST, MDA, TNF-α, and the liver histopathology score were significantly lower in the 100 mg/kgBB (NC100) and 50 mg/kgBB (NC50) curcumin nanoparticle groups compared to the model group (model) and pure curcumin group (C100) (p< 0.05). CONCLUSION Curcumin nanoparticles showed better hepatoprotective ability than pure curcumin.
Collapse
Affiliation(s)
- Irma Putri Damayanti
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Neni Susilaningsih
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Trilaksana Nugroho
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Suhartono Suhartono
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Suryono Suryono
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Hardhono Susanto
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Ari Suwondo
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| | - Endang Mahati
- Department of Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Prof. Soedarto SH, Tembalang, Semarang Jawa Tengah 50275, Indonesia
| |
Collapse
|
10
|
Behavioural Patterns and Growth Performance of Male Wistar Rats Exposed to Cigarette Smoke: Effects of Curcumin and Hesperidin. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
This study evaluated the behavioural responses of male Wistar rats to normal air or cigarette smoke (CS) and compared the effects of curcumin and hesperidin on growth performance. In experiment 1, male rats were randomised into two groups (n = 10): control and CS-exposed groups. During exposure (four weeks), the dietary and behavioural patterns were monitored. In experiment 2, forty-eight rats were distributed across eight groups (n = 6): normal control, CS control, CS + curcumin (10 mg.kg−1), CS + curcumin (20 mg.kg−1), CS + hesperidin (10 mg.kg−1), CS + hesperidin (20 mg.kg−1), curcumin (20 mg.kg−1), and hesperidin (20 mg.kg−1) for 6 weeks. Growth performance (feed intake, weight gain, and feed conversion ratio FCR) were assessed. In the first experiment, there was no significant difference (P > 0.05) in the body weight of the CS-exposed group compared to the normal control, whereas feed intake was significantly (P > 0.05) lower in the CS-group. The time to access feed and water was higher in the CS-group, while other behavioural responses (locomotion, stand upright, climbing, stand and stare, sniffing, sitting, and digging) were significantly reduced (P < 0.05) compared with normal control, especially after two weeks. In the second experiment, weight gain, feed in-take, and FCR were significantly lower in the CS-exposed group compared to the control group, whereas treatment with curcumin and hesperidin, especially at the higher dose (20 mg.kg−1 b. wt.), significantly improved the growth performance of the CS-exposed groups. This study submits that CS exposure negatively impacts on the growth performance and behavioural patterns and demonstrates the potentials of curcumin and hesperidin in addressing these CS-provoked changes.
Collapse
|
11
|
Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res 2022; 33:53-64. [PMID: 35699160 DOI: 10.1080/08982104.2022.2086567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Curcumin is a natural component extracted from the rhizomes of turmeric (Curcuma longa), a natural plat with known medicinal uses for more than 4000 years. Most turmeric therapeutic effects are attributed to curcumin, a yellow-coloured extract. Curcumin has received considerable attention due to its biological activities, such as its use in arthritis, liver and neurodegenerative diseases, obesity, and several types of cancers. Most of these curcumin therapeutic activities are related to its antioxidant and anti-inflammatory effects. However, the clinical application of curcumin is hampered by some limitations that prevent its extensive clinical application. Curcumin high hydrophobicity of curcumin and limited water solubility are among the most important limitations. This poor solubility will result in low bioavailability due to its poor absorption into plasma and the target tissues. Curcumin also has rapid metabolism, which will significantly lower its bioavailability and shorten its half-life. Moreover, curcumin is photosensitive with limited chemical stability during manufacturing and storage. These limitations have been overcome by applying nanotechnology using several types of nanoparticles (NPs). This includes using NPs such as liposomes, niosomes, gold nanoparticles, and many others to improve the curcumin solubility and bioavailability. This review focuses on the different types of NPs investigated and the outcomes generated by their use in the most recent studies in this field. To follow the latest advances in the field of site-specific drug delivery using nanomaterials, an electronic databases search was conducted using PubMed, Google scholar and Scopus using the following keywords: lipid-based nanoparticles, curcumin delivery, niosomes, and liposomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manal Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
12
|
Elanthendral G, Shobana N, Meena R, P P, Samrot AV. Utilizing pharmacological properties of polyphenolic curcumin in nanotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Tang X, Yu H, Bui B, Wang L, Xing C, Wang S, Chen M, Hu Z, Chen W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater 2021; 6:1541-1554. [PMID: 33294732 PMCID: PMC7691164 DOI: 10.1016/j.bioactmat.2020.11.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Iodine ion is one of the most indispensable anions in living organisms, particularly being an important substance for the synthesis of thyroid hormones. Curcumin is a yellow-orange polyphenol compound derived from the rhizome of Curcuma longa L., which has been commonly used as a spice and natural coloring agent, food additives, cosmetics as well as Chinese medicine. However, excess curcumin may cause DNA inactivation, lead to a decrease in intracellular ATP levels, and trigger the tissue necrosis. Therefore, quantitative detection of iodine and curcumin is of great significance in the fields of food and life sciences. Herein, we develop nitrogen-doped fluorescent carbon dots (NCDs) as a multi-mechanism detection for iodide and curcumin in actual complex biological and food samples, which was prepared by a one-step solid-phase synthesis using tartaric acid and urea as precursors without adding any other reagents. An assembled NCDs-Hg2+ fluorescence-enhanced sensor for the quantitative detection of I- was established based on a fluorescence "turn-off-on" mechanism in a linear range of 0.3-15 μM with a detection limit of 69.4 nM and successfully quantified trace amounts of I- in water samples and urine sample. Meanwhile, the as-synthesized NCDs also can be used as a fluorescent quenched sensor for curcumin detection based on the synergistic internal filtration effect (IFE) and static quenching, achieving a good linear range of 0.1-20 μM with a satisfactory detection limit of 29.8 nM. These results indicate that carbon dots are potential sensing materials for iodine and curcumin detection for the good of our health.
Collapse
Affiliation(s)
- Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Lingyun Wang
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Shaoyan Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box332, Shenyang, 110819, China
| | - Zhizhi Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| |
Collapse
|
14
|
Synthesis of Escherichia coli OmpA Oral Nanoparticles and Evaluation of Immune Functions against the Major Etiologic Agent of Cow Mastitis. Vaccines (Basel) 2021; 9:vaccines9030304. [PMID: 33807110 PMCID: PMC8005184 DOI: 10.3390/vaccines9030304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli is a major etiologic agent of cow mastitis, a condition that results in huge economic losses. There is a lack of an oral vaccine for cow mastitis. Previous studies have confirmed that the outer membrane protein A (OmpA) of E. coli is immunogenic and can be used for vaccine design. In the present study, OmpA was encapsulated into nanoparticles (NP-OmpA) for an oral vaccine for cow mastitis. Methods: OmpA was purified with Ni-NTA flow resin and encapsulated with chitosan (CS) to prepare NP-OmpA nanoparticles. The gastrointestinal tract was simulated in vitro (PBS, pH 1.2) to measure the protein release rate. The optimal preparation conditions for NP-OmpA were determined by analyzing the concentrations of OmpA and CS, magnetic mixing speed, mixing time, and the ratio of tripolyphosphate (TPP)/CS (w/w). NP-OmpA safety was assessed by function factors and histopathological examination of livers and kidneys. The immune activity of NP-OmpA was determined using qRT-PCR to assess immune-related gene expression, leukocyte phagocytosis of Staphylococcus aureus, ELISA to evaluate antiserum titer and immune recognition of E. coli, and the organ index. The immune protection function of NP-OmpA was assessed by the protection rate of NP-OmpA to E. coli in mice, qRT-PCR for inflammation-related gene expression, assay kits for antioxidant factors, and visceral injury in the histopathological sections. Results: NP-OmpA nanoparticles had a diameter of about 700 nm, loading efficiency (LE) of 79.27%, and loading capacity (LC) of 20.31%. The release rate of NP-OmpA (0~96 h) was less than 50% in vitro. The optimal preparation conditions for NP-OmpAs were OmpA protein concentration of 2 mg/mL, CS concentration of 5 mg/mL, TPP/CS (w/w) of 1:1, magnetic mixing speed of 150 r/min, and mixing time of 15 min. Histopathological sections and clinical analytes of uric acid (UA), creatinine (Cr), alanine aminotransferase (ALT), aspartate transaminase (AST), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) showed NP-OmpA did not damage mice livers or kidneys. NP-OmpA could enhance the immune-related gene expression of IFN-γ and HSP70 in the spleen, liver, and kidney and the leukocyte phagocytosis of S. aureus. The antiserum titer (1:3200) was obtained from mice immunized with NP-OmpA, which had an immune recognition effect to E. coli. The immune protection rate of NP-OmpA was 71.43% (p < 0.05) to E. coli. NP-OmpA could down-regulate the inflammation-related gene expression of TNF-a, IL-6, and IL-10 in the spleen, liver, and kidney, and the antioxidant factors MDA and SOD in the liver, and reduce injury in the liver and kidney of mice induced by E. coli. Conclusions: A novel NP-OmpA nanoparticle was encapsulated, and the optimal preparation conditions were determined. The NP-OmpA was safe and had good immune functions. They are expected to induce a response that resists infection with the major etiologic agent (E. coli) of cow mastitis.
Collapse
|
15
|
Hetta HF, Ahmed EA, Hemdan AG, El-Deek HE, Abd-Elregal S, Abd Ellah NH. Modulation of rifampicin-induced hepatotoxicity using poly(lactic-co-glycolic acid) nanoparticles: a study on rat and cell culture models. Nanomedicine (Lond) 2020; 15:1375-1390. [PMID: 32495696 DOI: 10.2217/nnm-2020-0001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Hepatotoxicity is the most serious adverse effect of rifampicin (RIF). We aimed to investigate the potential hepatoprotective effect of mannose-functionalized poly(lactic-co-glycolic acid)(PLGA)/RIF nanoparticles (NPs) in rats as a possible promising approach to minimize RIF-induced hepatotoxicity. Materials & methods: Mannose-functionalized PLGA/RIF NPs were fabricated and characterized in vitro, then the hepatoprotective effect of optimized NPs was studied on rat and cell culture models. Results: Following intraperitoneal administration of RIF NPs into rats, highly significant differences in levels of serum transaminases and oxidative stress markers, associated with significant differences in expression of Bax and Bcl-2 genes between NP- and free RIF-treated groups, revealing the hepatoprotective potential of NPs. Conclusion: RIF NPs may represent a promising therapeutic approach for tuberculosis via reducing dose frequency and consequently, RIF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA.,Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed G Hemdan
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Heba Em El-Deek
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saida Abd-Elregal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
16
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: A novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 2020; 27:1538-1552. [PMID: 32489292 PMCID: PMC7253904 DOI: 10.1016/j.sjbs.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, 840213, Sultan Abubakar, Sokoto State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Corresponding author at: Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| |
Collapse
|