1
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
2
|
Kar M, Anas M, Singh A, Basak A, Sen P, Mandal TK. Ion-/Thermo-Responsive fluorescent perylene-poly(ionic liquid) conjugates: One-pot microwave synthesis, self-aggregation and biological applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Li L, Wang Y, Sun Y, Yang W, Yin X, Chen Y, Liu Y. Novel and green hydroxyperylene imide based fluorescent polymer for calcium sulfate scale inhibition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Wang XC, Zhou SX, Ding L, Zhao YH, Min SX, Dong B, Song B. Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2256-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|