1
|
Li T, Wang Q, Su Y, Qiao F, Pei Q, Li X, Tan Y, Zhou Z. AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319270 DOI: 10.1021/acsami.3c01970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible sensors have attracted significant attention for medical applications. Herein, an AI-assisted stretchable polymer-based (AISP) sensor has been developed based on the Beer-Lambert law for disease monitoring and telenursing. Benefiting from the use of superior polymer materials, the AISP sensor features a high tensile strain of up to 100%, durability of >10,000 tests, excellent waterproofness, and no effect of temperature (1.6-60.9 °C). Such advantages support the capability that the AISP can be flexibly pasted on the skin surface as a wearable device for real-time monitoring of multiple physiological parameters. An AISP sensor-based swallowing recognition technique has been proposed with a high accuracy of up to 88.89%. Likewise, it has been expanded to a remote nursing assistance system to meet critical patients' physiological requirements and daily care. The hands-free communication experiment and robot control applications have also been successfully conducted based on the constructed system. Such merits demonstrate its potential as a medical toolkit and indicate promise for intelligent healthcare.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qian'ao Wang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yifei Su
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Feng Qiao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qingfeng Pei
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Li
- Tencent Robotics X Lab, Tencent Technology (Shenzhen) Company Ltd., Shenzhen 518064, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Feng R, Song F, Zhang YD, Wang XL, Wang YZ. A confined-etching strategy for intrinsic anisotropic surface wetting patterning. Nat Commun 2022; 13:3078. [PMID: 35654809 PMCID: PMC9163165 DOI: 10.1038/s41467-022-30832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Anisotropic functional patterned surfaces have shown significant applications in microfluidics, biomedicine and optoelectronics. However, surface patterning relies heavily on high-end apparatuses and expensive moulds/masks and photoresists. Decomposition behaviors of polymers have been widely studied in material science, but as-created chemical and physical structural changes have been rarely considered as an opportunity for wettability manipulation. Here, a facile mask-free confined-etching strategy is reported for intrinsic wettable surface patterning. With printing technology, the surface wetting state is regulated, enabling the chemical etching of setting locations and efficient fabrication of complex patterns. Notably, the created anisotropic patterns can be used for realizing water-responsive information storage and encryption as well as fabricating flexible electrodes. Featuring advantages of simple operation and economic friendliness, this patterning approach brings a bright prospect in developing functional materials with versatile applications. Anisotropic functional patterned surfaces have shown significant applications in microfluidics, biomedicine, and optoelectronics. Here, authors demonstrate a fast and mask-free etching method for accurate surface patterning by confined decomposition, enabling the efficient fabrication of complex patterns.
Collapse
Affiliation(s)
- Rui Feng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Ying-Dan Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
4
|
Sun J, Li Y, Liu G, Chen S, Zhang Y, Chen C, Chu F, Song Y. Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22108-22114. [PMID: 32320207 DOI: 10.1021/acsami.0c01138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The metal pattern plays a crucial role in various optoelectronic devices. However, fabrication of high-resolution metal patterns has serious problems including complicated techniques and high cost. Herein, an inkjet printed water-soluble sacrificial layer was proposed to fabricate a high-resolution metal pattern. The water-soluble sacrificial layer was inkjet printed on a polyethylene glycol terephthalate (PET) surface, and then the printed surface was deposited with a metal layer by evaporating deposition. When the deposited surface was rinsed by water, the metal layer deposited on the water-soluble sacrificial layer could be removed. Various high-resolution metal patterns were prepared, which could be used in electroluminescent displays, strain sensors, and 3D switches. This facile method could be a promising approach for fabricating high-resolution metal patterns.
Collapse
Affiliation(s)
- Jiazhen Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Guangping Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuoran Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fuqiang Chu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Indexed: 05/19/2023]
Abstract
Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Raza Qazi
- Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Biosciences, Center for Flexible and Wearable Electronics Advanced Research, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Effect of the Common Solvents on UV-Modified Photopolymer and EPDM Flexographic Printing Plates and Printed Ink Films. COATINGS 2020. [DOI: 10.3390/coatings10020136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this research was to analyze the influence of the solvents commonly used in flexography on photopolymer and ethylene propylene diene monomer (EPDM) flexographic printing plates and prints. EPDM plates are recommended when the reproduction process includes a higher amount of the solvents or aggressive solvents. Since additional UV treatment of flexographic printing plates could decrease the interaction between the plate and solvent, photopolymer and EPDM plates were treated with varied UV radiation and exposed to different types of solvents. Effects of the UV treatment and of the solvents on printing plate properties and on prints were analyzed. Results show that EPDM plates are more resistant to solvents in terms of the degree of swelling; however, surface properties of the plates were affected for both plate materials. In addition, the degree of swelling and increased hardness due to UV radiation were crucial for changes of the width of printed lines, and altered surface free energy affected the thickness of deposited ink film for both plate materials. Therefore, depending on the qualitative requirements of specific printed film, the duration of UV treatment can be adjusted for use with specific types of printing plate and solvent.
Collapse
|
7
|
Yun X, Xiong Z, He Y, Wang X. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication. RSC Adv 2020; 10:5478-5486. [PMID: 35498279 PMCID: PMC9049290 DOI: 10.1039/c9ra10373b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
In this work, reduced graphene oxide was used as a material to fabricate a superhydrophobic lotus-leaf-like surface through soft-lithographic duplication.
Collapse
Affiliation(s)
- Xiawei Yun
- Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiyuan Xiong
- Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yaning He
- Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xiaogong Wang
- Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
8
|
Wang C, Shao J, Lai D, Tian H, Li X. Suspended-Template Electric-Assisted Nanoimprinting for Hierarchical Micro-Nanostructures on a Fragile Substrate. ACS NANO 2019; 13:10333-10342. [PMID: 31437390 DOI: 10.1021/acsnano.9b04031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Coating hierarchical micro-nanostructures on the surface of optoelectronic devices has been demonstrated to improve the overall performance. However, fabricating desired structures on a fragile optoelectronic device substrate is still challenging. A suspended-template electric-assisted nanoimprinting technique is proposed herein to controllably fabricate hierarchical micro-nanostructures on a fragile substrate. The suspension design of the template ensures that it conveniently deforms to fully fit the surface fluctuation of the substrate. The deformation of template and the filling of liquid polymer in the micro/nanocavities of the template are both driven by the powerful surface/interface force generated by an electric field applied between the template and substrate surface, thus protecting the fragile substrate from squeezing damage. Different morphologies of hierarchical micro-nanostructures are fabricated by changing the electric field. Based on suspended-template electric-assisted nanoimprinting, the environmentally adaptable fully covering hierarchical micro-nanostructures are encapsulated on the surface of flip-film light-emitting diode chips, thus significantly enhancing their light management in complex environments.
Collapse
Affiliation(s)
- Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Dengshui Lai
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| |
Collapse
|
9
|
Guo J, Yang C, Dai Q, Kong L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3771. [PMID: 31480393 PMCID: PMC6749420 DOI: 10.3390/s19173771] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human-machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Optical Planar Waveguide Sensor with Integrated Digitally-Printed Light Coupling-in and Readout Elements. SENSORS 2019; 19:s19132856. [PMID: 31252582 PMCID: PMC6651219 DOI: 10.3390/s19132856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
Optical planar waveguide sensors, able to detect and process information from the environment in a fast, cost-effective, and remote fashion, are of great interest currently in different application areas including security, metrology, automotive, aerospace, consumer electronics, energy, environment, or health. Integration of networks of these systems together with other optical elements, such as light sources, readout, or detection systems, in a planar waveguide geometry is greatly demanded towards more compact, portable, and versatile sensing platforms. Herein, we report an optical temperature sensor with a planar waveguide architecture integrating inkjet-printed luminescent light coupling-in and readout elements with matched emission and excitation. The first luminescent element, when illuminated with light in its absorption band, emits light that is partially coupled into the propagation modes of the planar waveguide. Remote excitation of this element can be performed without the need for special alignment of the light source. A thermoresponsive liquid crystal-based film regulates the amount of light coupled out from the planar waveguide at the sensing location. The second luminescent element partly absorbs the waveguided light that reaches its location and emits at longer wavelengths, serving as a temperature readout element through luminescence intensity measurements. Overall, the ability of inkjet technology to digitally print luminescent elements demonstrates great potential for the integration and miniaturization of light coupling-in and readout elements in optical planar waveguide sensing platforms.
Collapse
|
11
|
Weng C, Yang J, Yang D, Jiang B. Molecular Dynamics Study on the Deformation Behaviors of Nanostructures in the Demolding Process of Micro-Injection Molding. Polymers (Basel) 2019; 11:polym11030470. [PMID: 30960454 PMCID: PMC6473610 DOI: 10.3390/polym11030470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Polymer parts with nanostructures have broad applications, possessing excellent optical, electrochemical, biological, and other functions. Injection molding technology is one of the main methods for mass production of polymer parts with various shapes and sizes. The demolding process is vital to the replication quality of molded parts with nanostructures. For this study, molecular dynamics simulations of polypropylene (PP), polymethyl methacrylate (PMMA), and cycloolefin copolymer (COC) were conducted for the demolding process. The average velocity, density distribution, adhesion energy, and demolding resistance were introduced to analyze the deformation behaviors of polymer nanostructure from a nickel nano-cavity with an aspect ratio of 2:1. The shoulders of nanostructures were firstly separated from the nickel mold insert in the simulation. Under the external demolding force of 0.07 nN, PP and PMMA could be successfully demolded with some deformations, while COC could not be completely demolded due to the greater adhesion energy between COC and Ni. It was found that the maximum adhesion energy occurred in the separation process between the shoulder of the nanostructure and Ni and the huge adhesion energy was the main cause of demolding defects. The velocity difference of the whole polymer layer and polymer nanostructure was further analyzed to explain the nanostructure deformation. In order to improve the quality of demolding, the external force applied on polymers should be properly increased.
Collapse
Affiliation(s)
- Can Weng
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Jin Yang
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Dongjiao Yang
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Bingyan Jiang
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| |
Collapse
|
12
|
Digital Luminescence Patterning via Inkjet Printing of a Photoacid Catalysed Organic-Inorganic Hybrid Formulation. Polymers (Basel) 2019; 11:polym11030430. [PMID: 30960414 PMCID: PMC6473484 DOI: 10.3390/polym11030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/29/2022] Open
Abstract
Accurate positioning of luminescent materials at the microscale is essential for the further development of diverse application fields including optoelectronics, energy, biotechnology and anti-counterfeiting. In this respect, inkjet printing has recently attracted great interest due to its ability to precisely deposit with high throughput and no contact, functional materials on different types of substrates. Here, we present a novel photoacid catalysed organic-inorganic hybrid luminescent ink. The formulation, containing monomers bearing epoxy and silane functionalities, a photoacid generator and a small percentage of Rhodamine-B, shows good jetting properties and adequate wetting of the deposited droplets on the receiving substrates. Ultraviolet exposure of the deposited material triggers the cationic ring-opening polymerization reaction of the epoxy groups. Concomitantly, if atmospheric water is available, hydrolysis and condensation takes place, overall leading to a luminescent crosslinked hybrid organic-inorganic polymeric material obtained through a simple one-step curing process, without post baking steps. Advantageously, protection of the ink from actinic light delays the hydrolysis and condensation conferring long-term stability to the ink. Digital patterning leads to patterned emissive surfaces and elements with good adhesion to different substrates, mechanical and optical properties for the fabrication of optical and photonic elements and devices.
Collapse
|