1
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Kearns MM, Morley CN, Parkatzidis K, Whitfield R, Sponza AD, Chakma P, De Alwis Watuthanthrige N, Chiu M, Anastasaki A, Konkolewicz D. A general model for the ideal chain length distributions of polymers made with reversible deactivation. Polym Chem 2022. [DOI: 10.1039/d1py01331a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A general model is developed for the distribution of polymers made with reversible deactivation. The model is applied to a range of experimental systems including RAFT, cationic and ATRP.
Collapse
Affiliation(s)
- Madison M. Kearns
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Colleen N. Morley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Alvaro D. Sponza
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Progyateg Chakma
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | | | - Melanie Chiu
- Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
3
|
Kandelhard F, Schuldt K, Schymura J, Georgopanos P, Abetz V. Model‐Assisted Optimization of RAFT Polymerization in Micro‐Scale Reactors—A Fast Screening Approach. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202000058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Felix Kandelhard
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Karina Schuldt
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Juliane Schymura
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Prokopios Georgopanos
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
| | - Volker Abetz
- Helmholtz‐Zentrum Geesthacht Institute of Membrane Research Max‐Planck‐Str. 1 Geesthacht 21502 Germany
- Institute of Physical Chemistry University of Hamburg Martin‐Luther‐King‐Platz 6 Hamburg 20146 Germany
| |
Collapse
|
4
|
Sandoval-Díaz JM, Rivera-Gálvez FJ, Fernández-García M, Jasso-Gastinel CF. Redox initiation in semicontinuous polymerization to search for specific mechanical properties of copolymers. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this work, for a semicontinuous emulsion polymerization reaction, it is shown that using a redox initiation system at 40°C, substantial modifications in copolymer chain composition with conversion can be easily obtained. To test controllable trajectories for comonomer feeding, linear and parabolic profiles were chosen to get different types of chain composition variations for the 50/50 w/w styrene/n-butyl acrylate system. For the “forced composition copolymers,” the molecular weight averages and distribution were obtained by size exclusion chromatography. The composition along conversion was followed by proton nuclear magnetic resonance to determine the weight composition distribution (WCD) of the copolymer chains. Mechanodynamic (dynamic-mechanical analysis), tensile, and hardness tests exhibited consistent results depending on the WCD that outcomes from the respective feeding profile. The results confirm that this methodology is of great potential for industrial applications when looking for synergy in copolymer properties, and low-cost processes.
Collapse
Affiliation(s)
- José Manuel Sandoval-Díaz
- Chemical Engineering Department, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán, 1421, Guadalajara44430, Jalisco, Mexico
| | - Francisco Javier Rivera-Gálvez
- Chemical Engineering Department, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán, 1421, Guadalajara44430, Jalisco, Mexico
| | - Marta Fernández-García
- Chemistry and Properties of Polymeric Materials Department, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Carlos Federico Jasso-Gastinel
- Chemical Engineering Department, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán, 1421, Guadalajara44430, Jalisco, Mexico
| |
Collapse
|
5
|
Zetterlund PB, D’hooge DR. The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
6
|
Clothier GKK, Guimarães TR, Khan M, Moad G, Perrier S, Zetterlund PB. Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Lett 2019; 8:989-995. [PMID: 35619483 DOI: 10.1021/acsmacrolett.9b00534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiblock copolymers are a class of polymeric materials with a range of potential applications. We report here a strategy for the synthesis of multiblock copolymers based on methacrylates. Reversible addition-fragmentation chain transfer (RAFT) polymerization is implemented as an emulsion polymerization to generate seed particles as nanoreactors, which can subsequently be employed in sequential RAFT emulsion polymerizations. The segregation effect allowed the synthesis of a high molar mass (>100,000 g·mol-1) decablock homopolymer at a high polymerization rate to an extent not previously achieved. A heptablock copolymer containing seven different 100 unit blocks was also successfully prepared, demonstrating how the strategy can be employed to precisely control the polymer composition at a level hitherto not accessible in environmentally friendly aqueous emulsion polymerization. Importantly, the methodology is a batch process without any intermediate purification steps, thus, rendering industrial scale up more feasible.
Collapse
Affiliation(s)
- Glenn K. K. Clothier
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Lena JB, Van Herk AM. Toward Biodegradable Chain-Growth Polymers and Polymer Particles: Re-Evaluation of Reactivity Ratios in Copolymerization of Vinyl Monomers with Cyclic Ketene Acetal Using Nonlinear Regression with Proper Error Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Baptiste Lena
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore
| | - Alexander M. Van Herk
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore
| |
Collapse
|