1
|
Sun G, Chen H, Feng Y, Liang Z, Liang F, Zhu M, Yu M. Insights into physical property changes of fish proteins during low-frequency electric field freezing. Food Chem 2025; 475:143211. [PMID: 39946925 DOI: 10.1016/j.foodchem.2025.143211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 03/09/2025]
Abstract
To elucidate the mechanism by which low-frequency electric field affect ice crystal formation, a comparative investigation was conducted to examine the effects of low-frequency electric field-assisted freezing (LF-EFAF) and air freezing (AF) on the physical properties of tilapia fish proteins. The LF-EFAF group exhibits a higher specific heat capacity, a lower enthalpy and a faster icing rate in comparison to the AF group, reduced the icing rate by 10.28 %. The dielectric constant of the LF-EFAF group remained closer to that of the fresh samples. Furthermore, LF-EFAF reduced fish protein conductivity by 5 %. A strong correlation was observed between alterations in the physical properties of fish proteins and changes in their protein characteristics. LF-EFAF was observed to reduce protein particles by 44 %, and enhance the dielectric loss of fish proteins. These effects resulted in a reduction in the size of the ice crystals.
Collapse
Affiliation(s)
- Guangquan Sun
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Yangjiang Polytechnic, 529566, Yangjiang, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of and Rural Affairs, 430070 Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Yaoze Feng
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of and Rural Affairs, 430070 Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 18120, China.
| | | | | | - Ming Zhu
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of and Rural Affairs, 430070 Wuhan, China.
| | - Ming Yu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang, 529500, China; Yangjiang Polytechnic, 529566, Yangjiang, China; Yangtze Delta Region Institute of Tsinghua University, 314006 Jiaxing, China.
| |
Collapse
|
2
|
Chouhan A, Tiwari A. Production of polyhydroxyalkanoate (PHA) biopolymer from crop residue using bacteria as an alternative to plastics: a review. RSC Adv 2025; 15:11845-11862. [PMID: 40236575 PMCID: PMC11998090 DOI: 10.1039/d4ra08505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Growing environmental concerns and the pressing need to combat plastic pollution have led to extensive research on sustainable alternatives to traditional plastics. Human blood sample analysis discovered microplastics which has caused health concerns regarding their influence on proper functioning of the human body. The compound polyhydroxyalkanoate (PHA) has gained popularity due to its comparable structure with synthetic polymers like polypropylene because it belongs to the category of biodegradable alternatives. Different PHA molecules have distinct properties because of their composition of monomers and production parameters. The current market offers an array of biopolymers but they do not satisfy industrial requirements regarding thermostability. The industrial heat-stability of materials comes from green biomass-derived polyethylene and extrudable cellulose biopolymers. The research analyses PHAs' suitability as synthetic plastic substitutes and addresses barriers to their industrial production and proposes modifications to improve performance. It underscores the importance of harnessing crop residue streams to produce valuable biopolymers, promoting resource efficiency and mitigating the environmental impact of plastic waste. This work aligns with the UN's sustainability goals, including SDG 3 good health, SDG 11 sustainable cities, SDG 12 responsible consumption, SDG 13 climate action, and SDG 14 sea and ocean protection.
Collapse
Affiliation(s)
- Aakriti Chouhan
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya (University of Technology of Madhya Pradesh), Accredited with Grade "A" By NAAC Airport Road Bhopal-462033 India
| | - Archana Tiwari
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya (University of Technology of Madhya Pradesh), Accredited with Grade "A" By NAAC Airport Road Bhopal-462033 India
| |
Collapse
|
3
|
Fu X, Si L, Zhang Z, Yang T, Feng Q, Song J, Zhu S, Ye D. Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat Commun 2025; 16:2357. [PMID: 40064924 PMCID: PMC11893758 DOI: 10.1038/s41467-025-57646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m-1 K-1, far below that of air and wet-spun aerogel fibers. Moreover, GAF's unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.
Collapse
Affiliation(s)
- Xiaotong Fu
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Lianmeng Si
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaoxin Zhang
- Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Tingting Yang
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Qichun Feng
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Jianwei Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shuze Zhu
- Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China.
| | - Dongdong Ye
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.
| |
Collapse
|
4
|
Hamada K, Hirakawa E, Tanabe T, Mine T, Ichikawa T, Nagata Y. Internal Temperature of Neonatal Endotracheal Tube Predicted by Infrared Thermography: A Neonatal Bench Study. Pediatr Pulmonol 2025; 60:e27425. [PMID: 39611443 DOI: 10.1002/ppul.27425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Neonatal ventilators are managed by monitoring the inspiratory gas temperature with a probe placed outside the incubator, although the temperature decreases as the gases passe through the ventilator circuit extension tube and endotracheal tube (ETT). There are no established methods for measuring the internal temperature of the ETT. This bench study aimed to investigate the feasibility of using infrared thermography (IRT) to predict the internal temperature of the ETT. METHODS A new method for predicting the internal ETT temperature using an IRT camera was established, and its accuracy and reliability were evaluated under various conditions. The external surface temperature of the ETT was measured with IRT, and the internal temperature was measured with thin thermocouples, which has minimal effect on ventilation and served as a true value. Temperature measurements were taken at two points, distal and proximal, respectively, to capture temperature changes during passage of gases through the ETT. RESULTS This method allowed prediction of the internal ETT temperature with high accuracy (R2 Adj = 0.946 and 0.974 at the proximal and distal ends, respectively). The internal and external temperatures of the ETT were related to the incubator temperature and ventilator mode. The effects of the size of the ETT, the set temperature of the constant-temperature tank, and the heated humidifier temperature were limited. CONCLUSION This non-contact method of internal temperature prediction allows continuous monitoring without interfering with ventilation, and will help airway management in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Keisuke Hamada
- Department of Clinical Engineering, Nagasaki Harbor Medical Center, Nagasaki, Japan
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Eiji Hirakawa
- Department of Neonatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Takashi Tanabe
- Research & Development Group, Technical Department, Atom Medical Corporation, Saitama, Japan
| | - Takashi Mine
- Department of Clinical Oncology, Nagasaki Harbor Medical Center, Nagasaki, Japan
- Department of Comprehensive Community Care Systems, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuki Ichikawa
- Department of Comprehensive Community Care Systems, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Yasuhiro Nagata
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Leading Medical Research Core Unit, Nagasaki, Japan
| |
Collapse
|
5
|
Ma YS, Kuo FM, Liu TH, Lin YT, Yu J, Wei Y. Exploring keratin composition variability for sustainable thermal insulator design. Int J Biol Macromol 2024; 275:133690. [PMID: 38971280 DOI: 10.1016/j.ijbiomac.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in β-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.
Collapse
Affiliation(s)
- Yu-Shuan Ma
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Fang-Mei Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ting Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
6
|
Forde R, Brandão ATSC, Bowman D, State S, Costa R, Enache LB, Enachescu M, Pereira CM, Ryan KM, Geaney H, McNulty D. Marine waste derived carbon materials for use as sulfur hosts for Lithium-Sulfur batteries. BIORESOURCE TECHNOLOGY 2024; 406:131065. [PMID: 38969241 DOI: 10.1016/j.biortech.2024.131065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Lithium-sulfur batteries are a promising alternative to lithium-ion batteries as they can potentially offer significantly increased capacities and energy densities. The ever-increasing global battery market demonstrates that there will be an ongoing demand for cost effective battery electrode materials. Materials derived from waste products can simultaneously address two of the greatest challenges of today, i.e., waste management and the requirement to develop sustainable materials. In this study, we detail the carbonisation of gelatin from blue shark and chitin from prawns, both of which are currently considered as waste biproducts of the seafood industry. The chemical and physical properties of the resulting carbons are compared through a correlation of results from structural characterisation techniques, including electron imaging, X-ray diffraction, Raman spectroscopy and nitrogen gas adsorption. We investigated the application of the resulting carbons as sulfur-hosting electrode materials for use in lithium-sulfur batteries. Through comprehensive electrochemical characterisation, we demonstrate that value added porous carbons, derived from marine waste are promising electrode materials for lithium-sulfur batteries. Both samples demonstrated impressive capacity retention when galvanostatically cycled at a rate of C/5 for 500 cycles. This study highlights the importance of looking towards waste products as sustainable feeds for battery material production.
Collapse
Affiliation(s)
- Rebecca Forde
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Ana T S C Brandão
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Deaglán Bowman
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sabrina State
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania; National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Renata Costa
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Laura-Bianca Enache
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; Academy of Romanian Scientists, Splaiul Independentei, 54, 050094 Bucharest, Romania
| | - Carlos M Pereira
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4169-007, Portugal
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Hugh Geaney
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - David McNulty
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
7
|
González L, Espinoza V, Tapia M, Aedo V, Ruiz I, Meléndrez M, Aguayo C, Atanase LI, Fernández K. Innovative Approach to Accelerate Wound Healing: Synthesis and Validation of Enzymatically Cross-Linked COL-rGO Biocomposite Hydrogels. Gels 2024; 10:448. [PMID: 39057471 PMCID: PMC11275597 DOI: 10.3390/gels10070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, an innovative conductive hybrid biomaterial was synthetized using collagen (COL) and reduced graphene oxide (rGO) in order for it to be used as a wound dressing. The hydrogels were plasticized with glycerol and enzymatically cross-linked with horseradish peroxidase (HRP). A successful interaction among the components was demonstrated by FTIR, XRD, and XPS. It was demonstrated that increasing the rGO concentration led to higher conductivity and negative charge density values. Moreover, rGO also improved the stability of hydrogels, which was expressed by a reduction in the biodegradation rate. Furthermore, the hydrogel's stability against the enzymatic action of collagenase type I was also strengthened by both the enzymatic cross-linking and the polymerization of dopamine. However, their absorption capacity, reaching values of 215 g/g, indicates the high potential of the hydrogels to absorb fluids. The rise of these properties positively influenced the wound closure process, achieving an 84.5% in vitro closure rate after 48 h. These findings clearly demonstrate that these original composite biomaterials can be a viable choice for wound healing purposes.
Collapse
Affiliation(s)
- Luisbel González
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| | - Víctor Espinoza
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| | - Mauricio Tapia
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| | - Valentina Aedo
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| | - Isleidy Ruiz
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| | - Manuel Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, 20Lientur 1457, Concepción 4060000, Chile;
| | - Claudio Aguayo
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Leonard I. Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Katherina Fernández
- Laboratorio de Biomateriales, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; (L.G.); (V.E.); (M.T.); (V.A.); (I.R.)
| |
Collapse
|
8
|
González-Moreno BJ, Galindo-Rodríguez SA, Rivas-Galindo VM, Pérez-López LA, Granados-Guzmán G, Álvarez-Román R. Enhancement of Strawberry Shelf Life via a Multisystem Coating Based on Lippia graveolens Essential Oil Loaded in Polymeric Nanocapsules. Polymers (Basel) 2024; 16:335. [PMID: 38337224 DOI: 10.3390/polym16030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Strawberries (Fragaria xannanasa) are susceptible to mechanical, physical, and physiological damage, which increases their incidence of rot during storage. Therefore, a method of protection is necessary in order to minimize quality losses. One way to achieve this is by applying polymer coatings. In this study, multisystem coatings were created based on polymer nanocapsules loaded with Lippia graveolens essential oil, and it was found to have excellent optical, mechanical, and water vapor barrier properties compared to the control (coating formed with alginate and with nanoparticles without the essential oil). As for the strawberries coated with the multisystem formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens, these did not present microbial growth and only had a loss of firmness of 17.02% after 10 days of storage compared to their initial value. This study demonstrated that the multisystem coating formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens could be a viable alternative to preserve horticultural products for longer storage periods.
Collapse
Affiliation(s)
- Barbara Johana González-Moreno
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Sergio Arturo Galindo-Rodríguez
- Departamento de Química Analítica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Verónica Mayela Rivas-Galindo
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Luis Alejandro Pérez-López
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Graciela Granados-Guzmán
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| | - Rocío Álvarez-Román
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico
| |
Collapse
|
9
|
Mitchell D. Honeybee cluster-not insulation but stressful heat sink. J R Soc Interface 2023; 20:20230488. [PMID: 37989226 PMCID: PMC10681098 DOI: 10.1098/rsif.2023.0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Since the early twentieth century, the outer layer (mantle) of honeybees (Apis mellifera) in the winter cluster has been said to insulate the cluster core. This has encouraged enforced clustering, by the beekeepers' dominant use of inadequately insulated hives and, in North America, refrigeration. This is often seen as a benign or even a necessary process, with beekeeping and academic research considering these conditions of extreme heat loss, compared with the honeybee's natural habitat, as natural and normal. By using porous material correlations, analysis of previous findings and a model of a cluster within a hive in a landscape that implements convection, conduction and radiation, we show that a honeybee colony increases in thermal conductivity, on transition from pre-cluster to dense mantle, by a factor of approximately 2, and insulation R-value can decrease by more than 11. These results show that the mantle does not act like insulation and that clustering is not benign, but instead is an evolutionary behavioural reaction to an existential threat that results in increased cold and exertion stress. Thus the attitude to forced clustering, i.e. deliberately provoking a stressful survival behaviour, needs revision as avoidable forced stress upon animals may be regarded as cruel.
Collapse
Affiliation(s)
- Derek Mitchell
- Institute of Thermofluids, School of Mechanical Engineering University of Leeds, Leeds, UK
- Eigentek, Tadley, Hampshire RG26 3ED, UK
| |
Collapse
|
10
|
Li M, Gao Y, Jiang M, Zhang H, Zhang Y, Wu Y, Zhou W, Wu D, Wu C, Wu L, Bao L, Ge X, Qi Z, Wei M, Li A, Ding Y, Zhang J, Pan G, Wu Y, Cheng Y, Zheng Y, Ji X. Dual-sized hollow particle incorporated fibroin thermal insulating coatings on catheter for cerebral therapeutic hypothermia. Bioact Mater 2023; 26:116-127. [PMID: 36879558 PMCID: PMC9984786 DOI: 10.1016/j.bioactmat.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023] Open
Abstract
Selective endovascular hypothermia has been used to provide cooling-induced cerebral neuroprotection, but current catheters do not support thermally-insulated transfer of cold infusate, which results in an increased exit temperature, causes hemodilution, and limits its cooling efficiency. Herein, air-sprayed fibroin/silica-based coatings combined with chemical vapor deposited parylene-C capping film was prepared on catheter. This coating features in dual-sized-hollow-microparticle incorporated structures with low thermal conductivity. The infusate exit temperature is tunable by adjusting the coating thickness and infusion rate. No peeling or cracking was observed on the coatings under bending and rotational scenarios in the vascular models. Its efficiency was verified in a swine model, and the outlet temperature of coated catheter (75 μm thickness) was 1.8-2.0 °C lower than that of the uncoated one. This pioneering work on catheter thermal insulation coatings may facilitate the clinical translation of selective endovascular hypothermia for neuroprotection in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Hongkang Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yang Zhang
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Nonferrous Metal Research, Xi'an, 710016, China
| | - Di Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Luzi Bao
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaoxiao Ge
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zhengfei Qi
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ang Li
- Department of Biomedical Engineering, Columbia University, New York City, NY, 10027, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jicheng Zhang
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Guangzhen Pan
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Yu Wu
- Gong Yi Van-research Innovation Composite Material Co. Ltd, Zheng Zhou, 451299, China
| | - Yan Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xunming Ji
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
11
|
Kurisaki I, Tanaka S, Mori I, Umegaki T, Mori Y, Tanaka S. Thermal conductivity and conductance of protein in aqueous solution: Effects of geometrical shape. J Comput Chem 2023; 44:857-868. [PMID: 36468822 PMCID: PMC10107505 DOI: 10.1002/jcc.27048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Considering the importance of elucidating the heat transfer in living cells, we evaluated the thermal conductivity κ and conductance G of hydrated protein through all-atom non-equilibrium molecular dynamics simulation. Extending the computational scheme developed in earlier studies for spherical protein to cylindrical one under the periodic boundary condition, we enabled the theoretical analysis of anisotropic thermal conduction and also discussed the effects of protein size correction on the calculated results. While the present results for myoglobin and green fluorescent protein (GFP) by the spherical model were in fair agreement with previous computational and experimental results, we found that the evaluations for κ and G by the cylindrical model, in particular, those for the longitudinal direction of GFP, were enhanced substantially, but still keeping a consistency with experimental data. We also studied the influence by salt addition of physiological concentration, finding insignificant alteration of thermal conduction of protein in the present case.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - Seiya Tanaka
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ichiro Mori
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Toshihito Umegaki
- Graduate School of System Informatics, Kobe University, Kobe, Japan.,Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Yoshiharu Mori
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Roldan-Kalil J, Zueva L, Alves J, Tsytsarev V, Sanabria P, Inyushin M. Amount of Melanin Granules in Human Hair Defines the Absorption and Conversion to Heat of Light Energy in the Visible Spectrum. Photochem Photobiol 2022. [PMID: 36403200 DOI: 10.1111/php.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
One of the known important functions of hair is protection from extensive sunlight. This protection is accomplished in large part due to natural hair pigmentation which is known to reflect the number of melanin granules (melanosomes) in the hair shaft, and melanin variants. Melanin takes in excessive light energy and converts it to heat in a process called absorption; heat is then dissipated into the environment as infrared radiation, thereby protecting the underlying skin. We used transmission electron microscopy (TEM) to visualize the melanosome counts in samples of human hair, and used thermal microscopy to measure the temperature changes of the samples when exposed to green and blue light lasers. In our experiments green light conversion to heat was highly correlated to the number of melanosomes, whereas blue light conversion to heat was less correlated, which may be because the reddish melanosomes it contains are less effective in absorbing energy from the blue spectrum of light. Anyway, we have shown the metals accumulation in the melanin can be easily visualized with TEM. We confirmed that the amount of melanin granules in human hair defines the conversion to heat of light energy in the visible spectrum.
Collapse
Affiliation(s)
| | - Lidia Zueva
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Janaina Alves
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | | | - Priscila Sanabria
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Mikhail Inyushin
- Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| |
Collapse
|
13
|
Murugarren N, Roig‐Sanchez S, Antón‐Sales I, Malandain N, Xu K, Solano E, Reparaz JS, Laromaine A. Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201947. [PMID: 35861401 PMCID: PMC9475533 DOI: 10.1002/advs.202201947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i.e., using the well-known 3ω-method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1.63 W mK-1 in the direction of the aligned fibers versus 0.3 W mK-1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials.
Collapse
Affiliation(s)
- Nerea Murugarren
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Soledad Roig‐Sanchez
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Irene Antón‐Sales
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Nanthilde Malandain
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Kai Xu
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Eduardo Solano
- NCD‐SWEET beamlineALBA Synchrotron Light SourceCarrer de la Llum 2−26Cerdanyola del VallèsBarcelona08290Spain
| | | | - Anna Laromaine
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| |
Collapse
|
14
|
Kalaoglu-Altan OI, Kayaoglu BK, Trabzon L. Improving thermal conductivities of textile materials by nanohybrid approaches. iScience 2022; 25:103825. [PMID: 35243220 PMCID: PMC8867053 DOI: 10.1016/j.isci.2022.103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The thermal transfer between individual body and the surroundings occurs by several paths such as radiation, evaporation, conduction, and convection. Thermal management is related with the heat transfer between the human body and the surroundings, which aims to keep the body temperature in the comfort range either via preserving or via emitting the body heat. The essential duty of clothing is to contribute to the thermal balance of the human body by regulating the heat and moisture transfer. In the case of poorly controlled body heat, health problems such as hyperthermia and heatstroke along with environmental problems due to higher energy consumption can occur. Recently, research has been focused on advanced textiles with novel approaches on materials synthesis and structure design, which can provide thermal comfort together with energy saving. This review article focuses on the innovative strategies basically on the passive textile models for improved thermal conductivity. We will discuss both the fabrication techniques and the inclusion of carbon-based and boron-based fillers to form nano-hybrid textile solutions, which are used to improve the thermal conductivity of the materials.
Collapse
Affiliation(s)
| | | | - Levent Trabzon
- Istanbul Technical University, Department of Mechanical Engineering, Beyoglu, Istanbul 34437, Turkey.,Istanbul Technical University, MEMS Research Center, Maslak, Istanbul 34469, Turkey.,Nanotechnology Research and Application Center - ITUnano, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
15
|
Gefen A. Alternatives and preferences for materials in use for pressure ulcer prevention: An experiment-reinforced literature review. Int Wound J 2022; 19:1797-1809. [PMID: 35274443 DOI: 10.1111/iwj.13784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Alleviation of localised, sustained tissue loads and microclimate management are the most critical performance criteria for materials in use for pressure ulcer prevention, such as in prophylactic dressings, padding or cushioning. These material performance criteria can be evaluated by calculating the extents of matching between the material stiffness (elastic modulus) and the thermal conductivity of the protective dressing, padding or cushioning with the corresponding properties of native skin, separately or in combination. Based on these bioengineering performance criteria, hydrocolloids, which are commonly used for prophylaxis of medical device-related pressure ulcers, exhibit poor stiffness matching with skin. In addition, there is remarkable variability in the modulus and thermal conductivity matching levels of different material types used for pressure ulcer prevention, however, it appears that among the materials tested, hydrogels provide the optimal matching with skin, followed by gels and silicone foams. The stiffness matching for hydrocolloids appears to be inferior even to that of gauze. This article provides quantitative performance criteria and metrics for these evaluations, and grades commonly used material types to biomechanically guide clinicians and industry with regards to the selection of dressings for pressure ulcer prevention, both due to bodyweight forces and as a result of applied medical devices.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Mahmood A, Patel D, Hickson B, DesRochers J, Hu X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int J Mol Sci 2022; 23:1415. [PMID: 35163339 PMCID: PMC8836285 DOI: 10.3390/ijms23031415] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/23/2022] Open
Abstract
Hydrogels from biopolymers are readily synthesized, can possess various characteristics for different applications, and have been widely used in biomedicine to help with patient treatments and outcomes. Polysaccharides, polypeptides, and nucleic acids can be produced into hydrogels, each for unique purposes depending on their qualities. Examples of polypeptide hydrogels include collagen, gelatin, and elastin, and polysaccharide hydrogels include alginate, cellulose, and glycosaminoglycan. Many different theories have been formulated to research hydrogels, which include Flory-Rehner theory, Rubber Elasticity Theory, and the calculation of porosity and pore size. All these theories take into consideration enthalpy, entropy, and other thermodynamic variables so that the structure and pore sizes of hydrogels can be formulated. Hydrogels can be fabricated in a straightforward process using a homogeneous mixture of different chemicals, depending on the intended purpose of the gel. Different types of hydrogels exist which include pH-sensitive gels, thermogels, electro-sensitive gels, and light-sensitive gels and each has its unique biomedical applications including structural capabilities, regenerative repair, or drug delivery. Major biopolymer-based hydrogels used for cell delivery include encapsulated skeletal muscle cells, osteochondral muscle cells, and stem cells being delivered to desired locations for tissue regeneration. Some examples of hydrogels used for drug and biomolecule delivery include insulin encapsulated hydrogels and hydrogels that encompass cancer drugs for desired controlled release. This review summarizes these newly developed biopolymer-based hydrogel materials that have been mainly made since 2015 and have shown to work and present more avenues for advanced medical applications.
Collapse
Affiliation(s)
- Ayaz Mahmood
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
| | - Dev Patel
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - Brandon Hickson
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - John DesRochers
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (D.P.); (B.H.); (J.D.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
17
|
Malyshev D, Öberg R, Dahlberg T, Wiklund K, Landström L, Andersson PO, Andersson M. Laser induced degradation of bacterial spores during micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120381. [PMID: 34562861 DOI: 10.1016/j.saa.2021.120381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Micro-Raman spectroscopy combined with optical tweezers is a powerful method to analyze how the biochemical composition and molecular structures of individual biological objects change with time. In this work we investigate laser induced effects in the trapped object. Bacillus thuringiensis spores, which are robust organisms known for their resilience to light, heat, and chemicals are used for this study. We trap spores and monitor the Raman peak from CaDPA (calcium dipicolinic acid), which is a chemical protecting the spore core. We see a correlation between the amount of laser power used in the trap and the release of CaDPA from the spore. At a laser power of 5 mW, the CaDPA from spores in water suspension remain intact over the 90 min experiment, however, at higher laser powers an induced effect could be observed. SEM images of laser exposed spores (after loss of CaDPA Raman peak was confirmed) show a notable alteration of the spores' structure. Our Raman data indicates that the median dose exposure to lose the CaDPA peak was ∼60 J at 808 nm. For decontaminated/deactivated spores, i.e., treated in sodium hypochlorite or peracetic acid solutions, the sensitivity on laser power is even more pronounced and different behavior could be observed on spores treated by the two chemicals. Importantly, the observed effect is most likely photochemical since the increase of the spore temperature is in the order of 0.1 K as suggested by our numerical multiphysics model. Our results show that care must be taken when using micro-Raman spectroscopy on biological objects since photoinduced effects may substantially affect the results.
Collapse
Affiliation(s)
| | - Rasmus Öberg
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | - Per Ola Andersson
- Swedish Defence Research Agency (FOI), Umeå, Sweden; Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Andersson
- Dept of Physics, Umeå University, 901 87 Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
18
|
Liu Y, Zhou Y, Xu Y. State-of-the-Art, Opportunities, and Challenges in Bottom-up Synthesis of Polymers with High Thermal Conductivity. Polym Chem 2022. [DOI: 10.1039/d2py00272h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to metals, polymers are predominantly thermal and electrical insulators. With their unparalleled advantages such as light weight, turning polymer insulators into heat conductors with metal-like thermal conductivity is...
Collapse
|
19
|
Xue Y, Lofland S, Hu X. Comparative Study of Silk-Based Magnetic Materials: Effect of Magnetic Particle Types on the Protein Structure and Biomaterial Properties. Int J Mol Sci 2020; 21:E7583. [PMID: 33066665 PMCID: PMC7589181 DOI: 10.3390/ijms21207583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates combining the good biocompatibility and flexibility of silk protein with three types of widely used magnetic nanoparticles to comparatively explore their structures, properties and potential applications in the sustainability and biomaterial fields. The secondary structure of silk protein was quantitatively studied by infrared spectroscopy. It was found that magnetite (Fe3O4) and barium hexaferrite (BaFe12O19) can prohibit β-sheet crystal due to strong coordination bonding between Fe3+ ions and carboxylate ions on silk fibroin chains where cobalt particles showed minimal effect. This was confirmed by thermal analysis, where a high temperature degradation peak was found above 640 °C in both Fe3O4 and BaFe12O19 samples. This was consistent with the magnetization studies that indicated that part of the Fe in the Fe3O4 and BaFe12O19 was no longer magnetic in the composite, presumably forming new phases. All three types of magnetic composites films maintained high magnetization, showing potential applications in MRI imaging, tissue regeneration, magnetic hyperthermia and controlled drug delivery in the future.
Collapse
Affiliation(s)
- Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Samuel Lofland
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
20
|
Fujisawa H, Ryu M, Lundgaard S, Linklater DP, Ivanova EP, Nishijima Y, Juodkazis S, Morikawa J. Direct Measurement of Temperature Diffusivity of Nanocellulose-Doped Biodegradable Composite Films. MICROMACHINES 2020; 11:E738. [PMID: 32751390 PMCID: PMC7464088 DOI: 10.3390/mi11080738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023]
Abstract
The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch-polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up to 2 wt%. of nanocellulose were synthesised by a simple chemical process and are biodegradable. Films of a high optical transmittance T≈80% (for a 200 μm thick film), which were up to 44% crystalline, were characterised. Two different modalities of temperature diffusivity based on (1) a resistance change and (2) micro-thermocouple detected voltage modulation caused by the heat wave, were used for the polymer films with cross sections of ∼100 μm thickness. Twice different in-plane α‖ and out-of-plane α⟂ temperature diffusivities were directly determined with high fidelity: α‖=2.12×10-7 m2/s and α⟂=1.13×10-7 m2/s. This work provides an example of a direct contact measurement of thermal properties of nanocellulose composite biodegradable polymer films. The thermal diffusivity, which is usually high in strongly interconnected networks and crystals, was investigated for the first time in this polymer nanocomposite.
Collapse
Affiliation(s)
- Hiroki Fujisawa
- CREST—JST and School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Meguya Ryu
- CREST—JST and School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
- Reserarch Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Japan
| | - Stefan Lundgaard
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Denver P. Linklater
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (D.P.L.); (E.P.I.)
| | - Elena P. Ivanova
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (D.P.L.); (E.P.I.)
| | - Yoshiaki Nishijima
- Department of Physics, Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junko Morikawa
- CREST—JST and School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| |
Collapse
|
21
|
Xue Y, Hu X. Electrospun Silk-Boron Nitride Nanofibers with Tunable Structure and Properties. Polymers (Basel) 2020; 12:E1093. [PMID: 32403370 PMCID: PMC7284470 DOI: 10.3390/polym12051093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022] Open
Abstract
In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.
Collapse
Affiliation(s)
- Ye Xue
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
22
|
Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer. Polymers (Basel) 2019; 11:polym11081331. [PMID: 31405161 PMCID: PMC6723675 DOI: 10.3390/polym11081331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022] Open
Abstract
This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010). These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties. To overcome or minimize the immiscibility, a glycidyl methacrylate copolymer, namely poly(styrene-ran-glycidyl methacrylate) (PS-GMA; Xibond™ 920) was used. The addition of 30 wt % bioPA provides increased renewable content up to 50 wt %, but the most interesting aspect is that bioPA contributes to improved toughness and other ductile properties such as elongation at yield. The morphology study revealed a typical immiscible droplet-like structure and the effectiveness of the PS-GMA copolymer was assessed by field emission scanning electron microcopy (FESEM) with a clear decrease in the droplet size due to compatibilization. It is possible to conclude that bioPA1010 can positively contribute to reduce the intrinsic stiffness of bioPET and, in addition, it increases the renewable content of the developed materials.
Collapse
|