1
|
Pan C, Gao Q, Chen Y, Wang Y, Tang Z. Recent progress in biosourced polylactic acid-based biocomposites for dentistry: A review. Int J Biol Macromol 2025; 310:143528. [PMID: 40288709 DOI: 10.1016/j.ijbiomac.2025.143528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Polylactic acid (PLA), a biodegradable polymer derived from renewable biological macromolecules such as corn starch and sugarcane, exhibits excellent biocompatibility, biodegradability, non-toxicity, and ease of functionalization, showing great potential in dental medicine applications. However, unmodified PLA has inherent drawbacks, such as poor mechanical ductility, slow degradation, and poor hydrophilicity, which limit its use in this field. This paper briefly introduces the structure and performance advantages of PLA and discusses various modification methods, including chemical and physical modifications. The properties of PLA composites are further elaborated on, with an emphasis on their latest advancements in dental implantation, restoration, orthodontics, maxillofacial surgery, and periodontal disease treatment. An outlook on the development trends of PLA-based composites in oral medicine is also provided, to enhance the role of PLA-based composites in this field and offer patients more treatment options and better outcomes.
Collapse
Affiliation(s)
- Chengxiao Pan
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China
| | - Qiong Gao
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Youli Chen
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yu Wang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhenglong Tang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Zheng Q, Xi Y, Weng Y. Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Adv 2024; 14:3359-3378. [PMID: 38259986 PMCID: PMC10801448 DOI: 10.1039/d3ra07075a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Electrostatic spinning as a technique for producing nanoscale fibers has recently attracted increasing attention due to its simplicity, versatility, and loadability. Nanofibers prepared by electrostatic spinning have been widely studied, especially in biomedical applications, because of their high specific surface area, high porosity, easy size control, and easy surface functionalization. Wound healing is a highly complex and dynamic process that is a crucial step in the body's healing process to recover from tissue injury or other forms of damage. Single-component nanofibers are more or less limited in terms of structural properties and do not fully satisfy various needs of the materials. This review aims to provide an in-depth analysis of the literature on the use of electrostatically spun nanofibers to promote wound healing, to overview the infinite possibilities for researchers to tap into their biomedical applications through functional composite modification of nanofibers for advanced and multifunctional materials, and to propose directions and perspectives for future research.
Collapse
Affiliation(s)
- Qianlan Zheng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Yuewei Xi
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University Beijing 100048 China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
3
|
Liu C, Qiao W, Wang C, Wang H, Zhou Y, Gu S, Xu W, Zhuang Y, Shi J, Yang H. Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior. Int J Biol Macromol 2021; 183:2205-2214. [PMID: 34087303 DOI: 10.1016/j.ijbiomac.2021.05.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Phase inversion induced by water droplets has garnered attention in the field of polymer science as a novel method for preparing porous membranes. This study investigates the effect of the porous structure of poly (lactic acid) (PLA) membranes prepared through phase inversion induced by water droplets at four different temperatures (25, 50, 75, and 100 °C) on the morphology and proliferation of 3T3 cells. The surface properties of the PLA porous membrane, including pore size, pore size distribution, surface roughness, surface hydrophilicity, and cytocompatibility with 3T3 cells, were evaluated. The results indicated that the synthesized PLA membrane had two surfaces with different structures. The upper surface in contact with the water droplets during preparation contained uniformly distributed micropores, whereas the bottom surface was smooth and composed of small particles in contacted with the mold. The upper surface showed high cytocompatibility with 3T3 cells, and the 3T3 cells migrated and grew within the pores at 25 °C. In contrast, the bottom surface exhibited low biocompatibility with the 3T3 cells. Our study has wide-ranging implications and will improve the fabrication and implementation of 3D cultured scaffolds with excellent cytocompatibility.
Collapse
Affiliation(s)
- Changjun Liu
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chaorong Wang
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Yingshan Zhou
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Shaojin Gu
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Yan Zhuang
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China.
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Hongjun Yang
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|