1
|
Tan Y, Wang K, Dong Y, Gong S, Lu Y, Shi SQ, Li J. Programmable and Shape-Color Synchronous Dual-Response Wood with Thermal Stimulus. ACS NANO 2024; 18:6718-6730. [PMID: 38277220 DOI: 10.1021/acsnano.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Stimuli-responsive materials exhibit huge potential in sensors, actuators, and electronics; however, their further development for reinforcement, visualization, and biomass-incorporation remains challenging. Herein, based on the impregnation of thermochromic microcapsule (TCM)-doped dynamic covalent vitrimers, a programmable shape-color dual-responsive wood (SRW-TC) was demonstrated with robust anisotropic structures and exchangeable covalent adaptable networks. Under mild conditions, the resultant SRW-TC displays feasible shape memorability and programmability, resulting from the rigidity-flexibility shift induced by the glass-transition temperature (34.99 °C) and transesterification reaction triggered by the topology freezing transition temperature (149.62 °C). Furthermore, the obtained SRW-TC possesses satisfactory mechanical performance (tensile strength of 45.70 MPa), thermal insulation (thermal conductivity of 0.27 W/m K), anisotropic light management, and benign optical properties (transmittance of 51.73% and haze of 99.67% at 800 nm). Importantly, the incorporation of compatible TCM enables SRW-TC to visualize shape memory feasibility and rigidity/flexibility switching and respond to the external thermal stimulus through the thermal-induced shape-color synchronous dual-responsiveness, which successfully demonstrates the applications of sensing temperature, grasping objects, encrypting/decoding icon messages, and so on. The proposed facile and highly effective strategy could serve as a guideline for developing high-performance multifunctional wood composite with promising intelligent applications in performance visualization, environmental sensing, materials interactivity, information dual-encryption, local precision shape and color regulation, etc.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Gong
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Recent Developments in Shape Memory Elastomers for Biotechnology Applications. Polymers (Basel) 2022; 14:polym14163276. [PMID: 36015530 PMCID: PMC9415838 DOI: 10.3390/polym14163276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022] Open
Abstract
Shape memory elastomers have revolutionised the world since their introduction in the 20th century. The ability to tailor chemical structures to produce a family of materials in wide-ranging forms with versatile properties has propelled them to be ubiquitous. Recent challenges in the end-of-life management of polymeric materials should prompt us to ask, ‘what innovations in polymeric materials can make a strong case for their use as efficient materials?’ The development of smart elastomers that can acquire, convey, or process a stimulus (such as temperature, pressure, electromagnetic field, moisture, and chemical signals) and reply by creating a useful effect, specifically a reversible change in shape, is one such innovation. Here, we present a brief overview of shape memory elastomers (SMEs) and thereafter a review of recent advances in their development. We discuss the complex processing of structure-property relations and how they differ for a range of stimuli-responsive SMEs, self-healing SMEs, thermoplastic SMEs, and antibacterial and antifouling SMEs. Following innovations in SEMs, the SMEs are forecast to have significant potential in biotechnology based on their tailorable physical properties that are suited to a range of different external stimuli.
Collapse
|
3
|
Pan P, Yan X, Wang L. Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface. Polymers (Basel) 2022; 14:polym14122500. [PMID: 35746076 PMCID: PMC9229320 DOI: 10.3390/polym14122500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 01/23/2023] Open
Abstract
The effect of the addition of fluorane microcapsules and urea formaldehyde resin (UF) waterborne acrylic resin microcapsules on the comprehensive properties of the water film on the surface of basswood was studied. Three-factor and two-level orthogonal experiments were carried out with "fluorane microcapsule content", "aqueous acrylic resin microcapsule content" and the "fluorane microcapsule addition method" to prepare a self-repairing thermochromic coating. The optical, mechanical, microstructure and self-repairing properties of the film were optimized by independent experiments on the maximum influence factors of the fluorane microcapsule content. It was concluded that the topcoat with 15% fluorane microcapsules and primer added with 15% water acrylic resin microcapsules had better comprehensive properties. The temperature range was 30-32 °C, the color difference at 32 °C was 72.6 ± 2.0, the 60° gloss was 3.3%, the adhesion was 0 grade, the hardness was 4 H, the impact resistance was 15.0 ± 0.8 kg∙cm, the elongation at break was 17.2% and the gap width was reduced by 3.5 ± 0.1 μm after the film was repaired. The repair rate reached 62.5%. By using microcapsule embedding technology, the repair agent and discoloration agent are embedded in the matrix. The waterborne acrylic resin microcapsules can effectively inhibit crack formation in the coating, and the fluorane microcapsules can achieve the thermochromic property of the coating. This study provides a new research idea for the self-repairing thermochromic dual function of a water-based coating.
Collapse
Affiliation(s)
- Pan Pan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
| | - Xiaoxing Yan
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence:
| | - Lin Wang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
4
|
Zhang W, Zhou J, Cao Z, Wu X, Wang H, Han S, Zhang Y, Sun F, Zhang T. In Situ Construction of Thermotropic Shape Memory Polymer in Wood for Enhancing Its Dimensional Stability. Polymers (Basel) 2022; 14:738. [PMID: 35215651 PMCID: PMC8876273 DOI: 10.3390/polym14040738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The extension of wood to a wider field has been restrained significantly due to its dimensional instability that arises from variation in moisture content, which in turn brings about the risk of cracking, warping or distortion. This work proposed a novel strategy to stabilize wood by means of the in situ construction of a thermotropic shape memory polymer (SMP) inside wood. The cross-linked copolymer network (PMP) with good shape memory behavior was first investigated based on the reaction of methyl methacrylate (MMA) and polyethylene glycol diacrylate (PEGDA) in a water/ethanol solution; then, the PMP was constructed inside wood via vacuum-pressure impregnation and in situ polymerization. The weight gain, volume increment and morphology observations clearly revealed that the PMP was mainly present in wood cell lumens, cell walls and pits. The presence of PMP significantly enhanced the dimensional stability of and reduced the cracks in wood. The desirable shape recovery abilities of PMP under heating-cooling cycles were considered to be the main reasons for wood dimensional stabilization, because it could counteract the internal stress or retard the shrinkage of cell walls once water was evaporated from the wood. This study provided a novel and reliable approach for wood modification.
Collapse
Affiliation(s)
- Wenhao Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Jianchao Zhou
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Zhijin Cao
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Xinxing Wu
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Hui Wang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Shuaibo Han
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Yan Zhang
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Fangli Sun
- College of Chemistry and Materials Engineering, National Engineering & Technology Research Center for the Comprehensive Utilization of Wood-Based Resources, Zhejiang A&F University, Hangzhou 311300, China; (W.Z.); (J.Z.); (Z.C.); (X.W.); (H.W.); (S.H.)
| | - Ting Zhang
- Xilinmen Furniture Co., Ltd., Shaoxing 312000, China;
| |
Collapse
|
5
|
Kam D, Levin I, Kutner Y, Lanciano O, Sharon E, Shoseyov O, Magdassi S. Wood Warping Composite by 3D Printing. Polymers (Basel) 2022; 14:polym14040733. [PMID: 35215644 PMCID: PMC8877370 DOI: 10.3390/polym14040733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Wood warping is a phenomenon known as a deformation in wood that occurs when changes in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which can be predesigned and affect the resulting structure after drying. The fabrication of the objects was performed by an extrusion-based 3D printing technique that enables the deposition of water-based inks into 3D objects. The printing ink was composed of 100% wood-based materials, wood flour, and plant-extracted natural binders cellulose nanocrystals, and xyloglucan, without the need for any additional synthetic resins. Two archetypal structures were printed: cylindrical structure and helices. In the former, we identified a new length scale that gauges the effect of gravity on the shape. In the latter, the structure exhibited a shape transition analogous to the opening of a seedpod, quantitatively reproducing theoretical predictions. Together, by carefully tuning the flow rate and printing pathway, the morphology of the fully dried wooden objects can be controlled. Hence, it is possible to design the printing of wet objects that will form different final 3D structures.
Collapse
Affiliation(s)
- Doron Kam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ido Levin
- Racah Institute of Physics, the Hebrew University, Jerusalem 9190401, Israel;
| | - Yinnon Kutner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Alpha Program, Future Scientist Center, Jerusalem 9190401, Israel
| | - Omri Lanciano
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
| | - Eran Sharon
- Racah Institute of Physics, the Hebrew University, Jerusalem 9190401, Israel;
- Correspondence: (E.S.); (O.S.); (S.M.)
| | - Oded Shoseyov
- Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence: (E.S.); (O.S.); (S.M.)
| | - Shlomo Magdassi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (D.K.); (Y.K.); (O.L.)
- Correspondence: (E.S.); (O.S.); (S.M.)
| |
Collapse
|
6
|
Sanabria SJ, Baensch F, Zauner M, Niemz P. In-situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography. Sci Rep 2020; 10:21615. [PMID: 33303882 PMCID: PMC7730398 DOI: 10.1038/s41598-020-78028-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
Wood-based composites hold the promise of sustainable construction. Understanding the influence on wood cellular microstructure in the macroscopic mechanical behavior is key for engineering high-performance composites. In this work, we report a novel Individual Cell Tracking (ICT) approach for in-situ quantification of nanometer-scale deformations of individual wood cells during mechanical loading of macroscopic millimeter-scale wood samples. Softwood samples containing > 104 cells were subjected to controlled radial tensile and longitudinal compressive load in a synchrotron radiation micro-computed tomography (SRµCT) setup. Tracheid and wood ray cells were automatically segmented, and their geometric variations were tracked during load. Finally, interactions between microstructure deformations (lumen geometry, cell wall thickness), cellular arrangement (annual growth rings, anisotropy, wood ray presence) with the macroscopic deformation response were investigated. The results provide cellular insight into macroscopic relations, such as anisotropic Poisson effects, and allow direct observation of previously suspected wood ray reinforcing effects. The method is also appropriate for investigation of non-linear deformation effects, such as buckling and deformation recovery after failure, and gives insight into less studied aspects, such as changes in lumen diameter and cell wall thickness during uniaxial load. ICT provides an experimental tool for direct validation of hierarchical mechanical models on real biological composites.
Collapse
Affiliation(s)
- Sergio J Sanabria
- Zurich Ultrasound Research and Translation (ZURT), Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Franziska Baensch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Michaela Zauner
- Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 6, 8093, Zurich, Switzerland
| | - Peter Niemz
- Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 6, 8093, Zurich, Switzerland
| |
Collapse
|
7
|
Huang WM. Continuous Journey Toward Polymer Applications. Polymers (Basel) 2020; 12:polym12020312. [PMID: 32033009 PMCID: PMC7077439 DOI: 10.3390/polym12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Wei Min Huang
- School of Mechanical and Aerospace Engineering; Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|