1
|
Smook LA, de Beer S. Molecular Design Strategies to Enhance the Electroresponse of Polyelectrolyte Brushes: Effects of Charge Fraction and Chain Length Dispersity. Macromolecules 2025; 58:1185-1195. [PMID: 39958485 PMCID: PMC11823628 DOI: 10.1021/acs.macromol.4c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
Polyelectrolyte brushes are functional surface coatings that react to external stimuli. The response of these brushes in electric fields is nearly immediate as the field acts directly on the charges in the polyion, while the response to bulk stimuli such as temperature, acidity, and ionic composition is intrinsically capped by transport limitations. However, the response of fully charged brushes is limited because large field strengths are required to achieve a response. This limits the application of these brushes to architectures such as small pores or nanojunctions because small biases can generate large field strengths over small distances. Here, we propose a design strategy that enhances the response and lowers the field strength required in these applications. Our coarse-grained simulations highlight two approaches to increase the electroresponse of polyelectrolyte brushes: dispersity in the chain length enhances the electroresponse and a reduction in the number of charged monomers does the same. With these approaches, we increase the relative brush height variation from only 28% to as much as 227% since in partially charged brushes, more chains need to respond to screen the imposed field and the longer chains in disperse brushes can reorganize over large distances. Additionally, we find that disperse brushes show a stratified response where short chains collapse first and long chains stretch first because this stratification minimizes the change in conformational energy. We envision that our insights will enable the application of electroresponsive polyelectrolyte brushes in larger architectures or in small architectures using smaller biases, which could enable a stimulus-responsive pore size modulation that could be used for filtration and molecular separations.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Department of Molecules and
Materials, MESA+ Institute, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Fuster-Aparisi A, Cerrato A, Batle J, Cerdà JJ. Dipolar Brush Polymers: A Numerical Study of the Force Exerted onto a Penetrating Colloidal Particle Under an External Field. Polymers (Basel) 2025; 17:366. [PMID: 39940567 PMCID: PMC11820698 DOI: 10.3390/polym17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Langevin Dynamics numerical simulations have been used to compute the force profiles that dipolar polymer brushes exert onto a penetrating colloidal particle. It has been observed that force profiles are strongly influenced by externally applied fields: at large distances from the grafting surface, a force barrier appears, and at shorter distances a region with lower repulsive forces develops. Furthermore, with the right combination of polymer grafting density, polymer chain length and strength of the external field, it is possible to observe in this intermediate region both the existence of net attractive forces onto the penetrating particle and the emergence of a stationary point. The existence of these regions of low repulsive or net attractive forces inside the dipolar brushes, as well as their dependence on the different parameters of the system can be qualitatively reasoned in terms of a competition between steric repulsion forces and Kelvin forces arising from the dipolar mismatch between different regions of the system. The possibility to tune force profile features such as force barriers and stationary points via an external field paves the way for many potential surface-particle-related applications.
Collapse
Affiliation(s)
- A. Fuster-Aparisi
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| | - Antonio Cerrato
- Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Sevilla, Spain;
| | - Josep Batle
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| | - Joan Josep Cerdà
- Departament de Física UIB, Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3), Campus UIB, 07122 Palma de Mallorca, Spain (J.B.)
| |
Collapse
|
3
|
Smook LA, Ishraaq R, Akash TS, de Beer S, Das S. All-atom molecular dynamics simulations showing the dynamics of small organic molecules in water-solvated polyelectrolyte brush layers. Phys Chem Chem Phys 2024; 26:25557-25566. [PMID: 39382440 DOI: 10.1039/d4cp02128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Polyelectrolyte brushes can introduce functionality to surfaces and because of this, these brushes have been studied extensively. In many applications, these brushes are used in solutions that contain a variety of molecules. While the interaction between polyelectrolyte brushes and molecules has been studied via coarse-grained simulations and experiments, such interaction has not been studied in molecular detail. An understanding of interactions in such molecular detail may prove crucial in the design of future brush coatings that can enable desired adsorption of different organic and biological molecules. Therefore, we present a first all-atom molecular dynamics simulations study of poly(sodium acrylate) brushes in contact with a small organic molecule, γ-butyrolactone. Within this molecular framework, we study the interaction of this lactone molecule with the brush layer and study the ensuing absorption and dynamics of the lactone inside the brush layer. The lactone is found to prefer to remain in the bulk solution; however, when absorbed, lactone molecules are found to have significantly reduced mobilities as compared to that in the bulk solution and are able to massively influence the properties of the brush-entrapped water molecules. These findings provide unprecedented details about the absorption-driven changes to molecular structure and dynamics of the lactone molecules and the water molecules inside the brush layer and can only be uncovered by our all-atom MD simulations. Such explicit and atomistically-resolved information, taking into account the specific chemical nature of the interacting systems, is rare in the context of designing polymer and PE brush-based coatings. Thus, we anticipate that our findings will be crucial in the design of future brush coatings aimed at providing adsorption platforms for different organic and biomolecules.
Collapse
Affiliation(s)
- Leon A Smook
- Department of Molecules and Materials, MESA+ Institute, University of Twente, Enschede, The Netherlands.
| | - Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Tanmay Sarkar Akash
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sissi de Beer
- Department of Molecules and Materials, MESA+ Institute, University of Twente, Enschede, The Netherlands.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Zhou L, Eden A, Chou KH, Huber DE, Pennathur S. Nanofluidic diodes based on asymmetric bio-inspired surface coatings in straight glass nanochannels. Faraday Discuss 2023; 246:356-369. [PMID: 37462093 DOI: 10.1039/d3fd00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, we present nanofluidic diodes fabricated from straight glass nanochannels and functionalized using bio-inspired polydopamine (PDA) and poly-L-lysine (PLL) coatings. The resulting PDA coatings are shown to be asymmetric due to a combination of transport considerations which can be leveraged to provide a measure of control over the effective channel geometry. By subsequently introducing a layer of amine-bearing PLL chains covalently bound to the PDA, we enhance heterogeneities in the charge and ion distributions within the channel and enable significant current rectification between forward-bias and reverse-bias modes; our PDA-PLL-coated channels yielded a rectification ratio greater than 1000 in a 100 nm channel filled with 0.01× phosphate-buffered saline solution (PBS). We further demonstrated that at higher ionic strength conditions, reducing the solution pH increased the number of protonated amines within the PLL layer, amplifying the charge disparities along the channel and leading to greater rectification. As nanofluidic diodes with bipolar surface charge distributions tend to provide superior performance compared to those with a single wall charge polarity, we imposed a more bipolar charge distribution in our devices by partially coating our PDA-PLL-coated channels with negatively charged polyacrylic acid (PAA). These enhanced bipolar channels exhibited greater current rectification than the PDA-PLL-coated channels, reaching rectification ratios in excess of 100 even in more physiologically-relevant 1× PBS solutions. Our fabrication approach and the results herein provide a promising platform from which the scientific community can build upon in the relentless endeavor for improved sensitivity in biosensors and other analytical devices.
Collapse
Affiliation(s)
- Lingyun Zhou
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Alexander Eden
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Kuang-Hua Chou
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - David E Huber
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Sumita Pennathur
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| |
Collapse
|
5
|
Balzer C, Wang ZG. Electroresponse of weak polyelectrolyte brushes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:82. [PMID: 37707751 PMCID: PMC10501941 DOI: 10.1140/epje/s10189-023-00341-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
End-tethered polyelectrolytes are widely used to modify substrate properties, particularly for lubrication or wetting. External stimuli, such as pH, salt concentration, or an electric field, can induce profound structural responses in weak polyelectrolyte brushes, which can be utilized to further tune substrate properties. We study the structure and electroresponsiveness of weak polyacid brushes using an inhomogeneous theory that incorporates both electrostatic and chain connectivity correlations at the Debye-Hückel level. Our calculation shows that a weak polyacid brush swells under the application of a negative applied potential, in agreement with recent experimental observation. We rationalize this behavior using a scaling argument that accounts for the effect of the surface charge. We also show that the swelling behavior has a direct influence on the differential capacitance, which can be modulated by the solvent quality, pH, and salt concentration.
Collapse
Affiliation(s)
- Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Zimmermann R, Duval JF, Werner C, Sterling JD. Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Senechal V, Rodriguez-Hernandez J, Drummond C. Electroresponsive Weak Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Carlos Drummond
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
| |
Collapse
|
9
|
Gallegos A, Ong GMC, Wu J. Ising density functional theory for weak polyelectrolytes with strong coupling of ionization and intrachain correlations. J Chem Phys 2021; 155:241102. [PMID: 34972389 DOI: 10.1063/5.0066774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a theoretical framework for weak polyelectrolytes by combining the polymer density functional theory with the Ising model for charge regulation. The so-called Ising density functional theory provides an accurate description of the effects of polymer conformation on the ionization of individual segments and is able to account for both the intra- and interchain correlations due to the excluded-volume effects, chain connectivity, and electrostatic interactions. Theoretical predictions of the titration behavior and microscopic structure of ionizable polymers are found to be in excellent agreement with the experiment.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
10
|
Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers (Basel) 2020; 12:polym12102282. [PMID: 33027995 PMCID: PMC7601300 DOI: 10.3390/polym12102282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization with end-tethered weak polyelectrolytes (PE) is a versatile way to modify and control surface properties, given their ability to alter their degree of charge depending on external cues like pH and salt concentration. Weak PEs find usage in a wide range of applications, from colloidal stabilization, lubrication, adhesion, wetting to biomedical applications such as drug delivery and theranostics applications. They are also ubiquitous in many biological systems. Here, we present an overview of some of the main theoretical methods that we consider key in the field of weak PE at interfaces. Several applications involving engineered nanoparticles, synthetic and biological nanopores, as well as biological macromolecules are discussed to illustrate the salient features of systems involving weak PE near an interface or under (nano)confinement. The key feature is that by confining weak PEs near an interface the degree of charge is different from what would be expected in solution. This is the result of the strong coupling between structural organization of weak PE and its chemical state. The responsiveness of engineered and biological nanomaterials comprising weak PE combined with an adequate level of modeling can provide the keys to a rational design of smart nanosystems.
Collapse
|