1
|
Azadi A, Rafieian F, Sami M, Rezaei A. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. Int J Biol Macromol 2023; 245:125225. [PMID: 37285892 DOI: 10.1016/j.ijbiomac.2023.125225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The aim of this investigation was to prepare and characterize active composite films made of chitosan (CS), tragacanth gum (TG), polyvinyl alcohol (PVA) and loaded with different concentrations of cinnamon essential oil (CEO) nanoemulsion (CEO, 2 and 4 % v/v). For this purpose, the amount of CS was fixed and the ratio of TG to PVA (90:10, 80:20, 70:30, and 60:40) was considered variable. The physical (thickness and opacity), mechanical, antibacterial and water-resistance properties of the composite films were evaluated. According to the microbial tests, the optimal sample was determined and evaluated with several analytical instruments. CEO loading increased the thickness and EAB of composite films, while decreasing light transmission, tensile strength, and water vapor permeability. All the films containing CEO nanoemulsion had antimicrobial properties, but this activity was higher against Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) than Gram-negative types (Escherichia coli (O157:H7) and Salmonella typhimurium). According to the results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD), the interaction between the components of the composite film was confirmed. It can be concluded that the CEO nanoemulsion can be incorporated in CS/TG/PVA composite films and successfully used as active and environmentally friendly packaging.
Collapse
Affiliation(s)
- Aidin Azadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Enache AC, Samoila P, Cojocaru C, Bele A, Bostanaru AC, Mares M, Harabagiu V. Amphiphilic Chitosan Porous Membranes as Potential Therapeutic Systems with Analgesic Effect for Burn Care. MEMBRANES 2022; 12:973. [PMID: 36295732 PMCID: PMC9611202 DOI: 10.3390/membranes12100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Eliminating or at least lessening the pain is a crucial aspect of burns management, as pain can negatively affect mental health and quality of life, and it can also induce a delay on wound healing. In this context, new amphiphilic chitosan 3D porous membranes were developed and investigated as burns therapeutic systems with analgesic effect for delivery of lidocaine as local anesthetic. The highly porous morphology of the membranes and the structural modifications were evidenced by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and infrared spectroscopy (FTIR). Improved compression mechanical properties, long-term hydrolytic degradation (28 days) evaluation and high swelling capacities (ranging from 8 to 22.6 g/g) indicate an increased capacity of the prepared membranes to absorb physiological fluids (burns exudate). Lidocaine in vitro release efficiency was favored by the decreased content of cross-linking agent (reaching maximum value of 95.24%) and the kinetic data modeling, indicating that lidocaine release occurs by quasi-Fickian diffusion. In addition to the in vitro evaluation of analgesic effect, lidocaine-loaded chitosan membranes were successfully investigated and proved antibacterial activity against most common pathogens in burns infections: Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Andra-Cristina Enache
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Adrian Bele
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Andra-Cristina Bostanaru
- Laboratory of Antimicrobial Chemotherapy, “Ion Ionescu de la Brad” University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, “Ion Ionescu de la Brad” University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Valeria Harabagiu
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Taneja N, Dujearic-Stephane K, Agrawal N, Kumar A, Singh P, Bharti, Gupta M, Kumar Y. Biodegradable and highly conductive polymeric blend based on the latex of Calotropis gigantea as solid electrolyte in energy storage applications. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221122675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A blend polymer based on the latex of the South-Asian giant milkweed Calotropis gigantea (CGL) combined with poly (vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) at a mass ratio of 1:1 without the addition of doping salts was synthesized via solution casting to prepare an ionic conductive film. The morphology, crystalline state, vibrational and thermal properties of the film were investigated by Scanning electron microscopy, X-ray diffraction, Fourier Transform infrared spectroscopy (FTIR), Thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The ionic conductivity and transport properties were investigated by using electrochemical impedance spectroscopy (EIS) Technique. Due the highest ionic conductivity at room temperature (2.7 x 10−2 S/cm), all-solid-state electrolyte was assembled using the prepared polymer film and a comparative study was conducted with respect to 1M H2SO4 liquid electrolyte, regarding the specific capacitance and the electrical properties. The results demonstrate that the fabricated all-solid-state supercapacitor using PVDF-HFP/CGL blend polymer film as electrolyte matches the performance of the liquid electrolyte.
Collapse
Affiliation(s)
- Neha Taneja
- Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Kouao Dujearic-Stephane
- Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Namrata Agrawal
- Department of Physics, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Ashwani Kumar
- Indian Institute of Technology, Nanoscience Laboratory, Institute Instrumentation Centre (IIC), Roorkee, India
| | - Pushpa Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Bharti
- Department of Physics, Shivaji College, University of Delhi, New Delhi, India
| | - Meenal Gupta
- Department of Physics, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Yogesh Kumar
- Department of Physics, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Spoială A, Ilie CI, Dolete G, Croitoru AM, Surdu VA, Trușcă RD, Motelica L, Oprea OC, Ficai D, Ficai A, Andronescu E, Dițu LM. Preparation and Characterization of Chitosan/TiO 2 Composite Membranes as Adsorbent Materials for Water Purification. MEMBRANES 2022; 12:membranes12080804. [PMID: 36005719 PMCID: PMC9414885 DOI: 10.3390/membranes12080804] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
As it is used in all aspects of human life, water has become more and more polluted. For the past few decades, researchers and scientists have focused on developing innovative composite adsorbent membranes for water purification. The purpose of this research was to synthesize a novel composite adsorbent membrane for the removal of toxic pollutants (namely heavy metals, antibiotics and microorganisms). The as-synthesized chitosan/TiO2 composite membranes were successfully prepared through a simple casting method. The TiO2 nanoparticle concentration from the composite membranes was kept low, at 1% and 5%, in order not to block the functional groups of chitosan, which are responsible for the adsorption of metal ions. Nevertheless, the concentration of TiO2 must be high enough to bestow good photocatalytic and antimicrobial activities. The synthesized composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and swelling capacity. The antibacterial activity was determined against four strains, Escherichia coli, Citrobacter spp., Enterococcus faecalis and Staphylococcus aureus. For the Gram-negative strains, a reduction of more than 5 units log CFU/mL was obtained. The adsorption capacity for heavy metal ions was maximum for the chitosan/TiO2 1% composite membrane, the retention values being 297 mg/g for Pb2+ and 315 mg/g for Cd2+ ions. These values were higher for the chitosan/TiO2 1% than for chitosan/TiO2 5%, indicating that a high content of TiO2 can be one of the reasons for modest results reported previously in the literature. The photocatalytic degradation of a five-antibiotic mixture led to removal efficiencies of over 98% for tetracycline and meropenem, while for vancomycin and erythromycin the efficiencies were 86% and 88%, respectively. These values indicate that the chitosan/TiO2 composite membranes exhibit excellent photocatalytic activity under visible light irradiation. The obtained composite membranes can be used for complex water purification processes (removal of heavy metal ions, antibiotics and microorganisms).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre of Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- National Center for Scientific Research for Food Safety, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lia-Mara Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
5
|
Evaluation of Physically and/or Chemically Modified Chitosan Hydrogels for Proficient Release of Insoluble Nystatin in Simulated Fluids. Gels 2022; 8:gels8080495. [PMID: 36005096 PMCID: PMC9407202 DOI: 10.3390/gels8080495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
To avoid fungal spreading in the bloodstream and internal organs, many research efforts concentrate on finding appropriate candidiasis treatment from the initial stage. This paper proposes chitosan-based physically or chemically cross-linked hydrogels aimed to provide sustained release of micronized nystatin (NYSm) antifungal drug, known for its large activity spectrum. Nystatin was demonstrated itself to provide hydrodynamic/mechanic stability to the chitosan hydrogel through hydrophobic interactions and H-bonds. For chemical cross-linking of the succinylated chitosan, a non-toxic diepoxy-functionalized siloxane compound was used. The chemical structure and composition of the hydrogels, also their morphology, were evidenced by infrared spectroscopy (FTIR), by energy dispersive X-ray (EDX) analysis and by scanning electron microscopy (SEM), respectively. The hydrogels presented mechanical properties which mimic those of the soft tissues (elastic moduli < 1 MPa), necessary to ensure matrix accommodation and bioadhesion. Maximum swelling capacities were reached by the hydrogels with higher succinic anhydride content at both pH 7.4 (429%) and pH 4.2 (471%), while higher amounts of nystatin released in the simulative immersion media (57% in acidic pH and 51% in pH 7.4) occurred from the physical cross-linked hydrogel. The release mechanism by non-swellable matrix diffusion and the susceptibility of three Candida strains make all the hydrogel formulations effective for NYSm local delivery and for combating fungal infections.
Collapse
|
6
|
Nivetha N, Thangamani A, Velmathi S. Sulfated Titania (TiO
2
‐SO
4
2−
) as an Efficient Catalyst for Organic Synthesis: Overarching Review from 2000 to 2021. ChemistrySelect 2022. [DOI: 10.1002/slct.202104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Narayanasamy Nivetha
- Organic and Polymer Synthesis Laboratory Department of Chemistry National Institute of Technology Tiruchirappalli 620 015 India
| | - Arumugam Thangamani
- Department of Chemistry Karpagam Academy of Higher Education Coimbatore 641 021 India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory Department of Chemistry National Institute of Technology Tiruchirappalli 620 015 India
| |
Collapse
|
7
|
Humelnicu AC, Samoilă P, Cojocaru C, Dumitriu R, Bostănaru AC, Mareș M, Harabagiu V, Simionescu BC. Chitosan-Based Therapeutic Systems for Superficial Candidiasis Treatment. Synergetic Activity of Nystatin and Propolis. Polymers (Basel) 2022; 14:689. [PMID: 35215602 PMCID: PMC8876245 DOI: 10.3390/polym14040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The paper deals with new approaches to chitosan (CS)-based antifungal therapeutic formulations designed to fulfill the requirements of specific applications. Gel-like formulations were prepared by mixing CS dissolved in aqueous lactic acid (LA) solution with nystatin (NYS) powder and/or propolis (PRO) aqueous solution dispersed in glycerin, followed by water evaporation to yield flexible mesoporous (pore widths of 2-4 nm) films of high specific surfaces between 1 × 103 and 1.7 × 103 m2/g. Morphological evaluation of the antifungal films showed uniform dispersion and downsizing of NYS crystallites (with initial sizes up to 50 μm). Their mechanical properties were found to be close to those of soft tissues (Young's modulus values between 0.044-0.025 MPa). The films presented hydration capacities in physiological condition depending on their composition, i.e., higher for NYS-charged (628%), as compared with PRO loaded films (118-129%). All NYS charged films presented a quick release for the first 10 min followed by a progressive increase of the release efficiency at 48.6%, for the samples containing NYS alone and decreasing values with increasing amount of PRO to 45.9% and 42.8% after 5 h. By in vitro analysis, the hydrogels with acidic pH values around 3.8 were proven to be active against Candida albicans and Candida glabrata species. The time-killing assay performed during 24 h on Candida albicans in synthetic vagina-simulative medium showed that the hydrogel formulations containing both NYS and PRO presented the faster slowing down of the fungal growth, from colony-forming unit (CFU)/mL of 1.24 × 107 to CFU/mL < 10 (starting from the first 6 h).
Collapse
Affiliation(s)
- Andra-Cristina Humelnicu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Petrișor Samoilă
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Corneliu Cojocaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Raluca Dumitriu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Bogdan C. Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| |
Collapse
|
8
|
Assessment on the Effect of Sulfuric Acid Concentration on Physicochemical Properties of Sulfated-Titania Catalyst and Glycerol Acetylation Performance. Catalysts 2021. [DOI: 10.3390/catal11121542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this research, a solid acid catalyst was synthesized to catalyse glycerol acetylation into acetins. The sulphated-titania catalysts were prepared via the wet impregnation method at different sulfuric acid concentrations (5%, 10%, 15%, and 20%) and denoted as 5SA, 10SA, 15SA, and 20SA, respectively. The synthesized catalysts were characterized using FTIR, XRD, TGA, BET, NH3-TPD, XRF, and SEM-EDX. The synthesized catalysts were tested on glycerol acetylation reaction at conditions: 0.5 g catalyst loading, 100–120 °C temperature, 1:6 glycerol/acetic acid molar ratios, and 2–4 h reaction time. The final product obtained was analysed using GC-FID. An increment in sulfuric acid concentration reduces the surface area, pore volume, and particles size. However, the increment has increased the number of active sites (Lewis acid) and strong acid strength. 15SA catalyst exhibited excellent glycerol conversion (>90%) and the highest selectivity of triacetin (42%). Besides sufficient surface area (1.9 m2 g−1) and good porosity structure, the great performance of the 15SA catalyst was attributed to its high acid site density (342.6 µmol g−1) and the high active site of metal oxide (95%).
Collapse
|
9
|
Liu M, Xie Z, Ye H, Li W, Shi W, Liu Y. Magnetic cross-linked chitosan for efficient removing anionic and cationic dyes from aqueous solution. Int J Biol Macromol 2021; 193:337-346. [PMID: 34710473 DOI: 10.1016/j.ijbiomac.2021.10.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Herein, a novel magnetic cross-linked chitosan CS-BA@Fe3O4 was rationally synthesized by cross-linked with epichlorohydrin and coated with Fe3O4 to the acylated chitosan, which was prepared by the reaction of chitosan with benzenetricarboxylic anhydride. The as-obtained absorbent was characterized by FTIR, XRD, VSM, TGA, TEM, BET, SEM and EDS. The results showed that the maximum adsorption capacities of CR and CV were 471.46 ± 16.97 mg/g and 515.91 ± 25.12 mg/g at 318.15 K, respectively. The main adsorption mechanisms were H-bonding and electrostatic interaction. The kinetic data were in good agreement with the pseudo-second-order model and closed to adsorption equilibrium at 30 min. Thermodynamic studies showed that the adsorption on CS-BA@Fe3O4 were spontaneous and endothermic. More importantly, the adsorbent exhibited excellent regeneration properties after 6 cycles and remarkable stability under harsh environments including strong acid, strong alkali, multi-salt and mixed dyes conditions. Therefore, abundant efforts revealed a broad application prospect of CS-BA@Fe3O4 in water remediation.
Collapse
Affiliation(s)
- Minyao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China.
| | - Hao Ye
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Li
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yucheng Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
10
|
Samoila P, Grecu I, Asandulesa M, Cojocaru C, Harabagiu V. Bio-based ionically cross-linked alginate composites for PEMFC potential applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
|
12
|
Babaryk AA, Adawy A, García I, Trobajo C, Amghouz Z, P Colodrero RM, Cabeza A, Olivera-Pastor P, Bazaga-García M, Dos Santos-Gómez L. Structural and proton conductivity studies of fibrous π-Ti 2O(PO 4) 2·2H 2O: application in chitosan-based composite membranes. Dalton Trans 2021; 50:7667-7677. [PMID: 33977991 DOI: 10.1039/d1dt00735a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) has been known for decades, its crystal structure has remained unsolved. Herewith, we report the crystal structure of π-TiP at room temperature, as determined from synchrotron radiation powder X-ray diffraction, and corroborated by 31P solid state NMR and accurate density functional theory calculations. In contrast to the previously reported ρ-TiP polymorph, the as-synthesized hydrated phase crystallizes in the monoclinic system (P21/c, a = 5.1121(2) Å, b = 14.4921(9) Å, c = 12.0450(11), β = 115.31(1)°, Z = 4), and is composed of corner-sharing titanium octahedra and phosphate units arranged in a pattern that is unique to the ρ-TiP polymorph. The unit cell was confirmed by electron diffraction, while the formation of planar packing imperfections and stacking faults along the [101] plane was revealed by HRTEM analysis. An in situ dehydration study of π-TiP, monitored by high-temperature powder X-ray diffraction, led to a new anhydrous monoclinic (P21/c, a = 5.1187(13) Å, b = 11.0600(21) Å, c = 14.4556(26), β = 107.65(2)°, Z = 4) phase that crystallizes at 500 °C. The latter resembles the packing fashion of the parental π-TiP, albeit titanium atoms are present in both distorted tetrahedral and octahedral coordination environments. Anhydrous π-TiP was found to partially rehydrate at room temperature, reversibly adopting the structure of the initial phase. The studies carried out under different conditions of leaching and impregnation with H3PO4 showed that π-TiP exhibits an extrinsic proton conductivity (1.3 × 10-3 S cm-1 at 90 °C and 95% RH) due to the presence of the protonated phosphate species bound on the particles surface, as revealed by 31P MAS-NMR spectroscopy data. The composite membranes of Chitosan (CS) matrices filled with H3PO4-impregnated π-TiP solid show an increment of proton conductivity up to 4.5 × 10-3 S cm-1, at 80 °C and 95% RH, which is 1.8-fold higher than those of the bare CS membranes.
Collapse
Affiliation(s)
- Artem A Babaryk
- Department of Physical and Analytical Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain.
| | - Alaa Adawy
- Laboratory of High-Resolution Transmission Electron Microscopy, Institute for Scientific and Technological Resources, University of Oviedo, 33006, Oviedo, Spain
| | - Inés García
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Camino Trobajo
- Department of Organic and Inorganic Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain
| | - Zakariae Amghouz
- Department of Materials Science and Metallurgical Engineering, University of Oviedo, 33203, Gijón, Spain
| | - Rosario M P Colodrero
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Aurelio Cabeza
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Pascual Olivera-Pastor
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Montse Bazaga-García
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Lucía Dos Santos-Gómez
- Department of Physical and Analytical Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain.
| |
Collapse
|