1
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
2
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
3
|
Silina EV, Stupin VA, Manturova NE, Ivanova OS, Popov AL, Mysina EA, Artyushkova EB, Kryukov AA, Dodonova SA, Kruglova MP, Tinkov AA, Skalny AV, Ivanov VK. Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration. Int J Mol Sci 2023; 24:14501. [PMID: 37833949 PMCID: PMC10572590 DOI: 10.3390/ijms241914501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10-2 to 10-6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3-5 nm) and their aggregates with diameters of 60-130 nm. CeO2-2 comprises small aggregates of 8-20 nm in diameter, which consist of particles of 2-3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10-2, 10-3, 10-4, 10-5, and 10-6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types-from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10-3-10-4 M.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Victor A. Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Natalia E. Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena A. Mysina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.L.P.); (E.A.M.)
| | - Elena B. Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Kursk State Medical University, 305041 Kursk, Russia; (E.B.A.); (A.A.K.); (S.A.D.)
| | - Maria P. Kruglova
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
| | - Alexey A. Tinkov
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Anatoly V. Skalny
- Institute of Biodesign and Modeling of Complex Systems, Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.P.K.); (A.A.T.); (A.V.S.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Silina EV, Stupin VA, Suzdaltseva YG, Aliev SR, Abramov IS, Khokhlov NV. Application of Polymer Drugs with Cerium Dioxide Nanomolecules and Mesenchymal Stem Cells for the Treatment of Skin Wounds in Aged Rats. Polymers (Basel) 2021; 13:1467. [PMID: 34062803 PMCID: PMC8125777 DOI: 10.3390/polym13091467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
The urgency of the problem of wound healing is not in doubt, given the global trend of an increase in the number of operations and injuries with skin damage, as well as the lack of universal means of treating wounds. STUDY OBJECTIVE To compare the effectiveness of the developed drugs, smart polymeric nano-drug with cerium oxide nanoparticles (SPN), and smart polymeric nano-drug in combination with mesenchymal stem cells (SPN + SC) on the healing process of skin wounds. MATERIAL AND METHODS An experimental study was carried out using Wistar rats of post-reproductive age, which had dermis and epidermis removed on their backs. There were four groups of wounds in total: control, treatment with mesenchymal stem cells (SC), SPN, and SPN + SC. RESULTS A positive therapeutic effect of polymeric drugs on the dynamics of wound area reduction was established, which was most typical for wounds of the SPN group and, particularly, the SPN + SC group. On the third day, an anti-inflammatory effect was revealed in the SC and the SPN + SC groups in particular, which was expressed in a reduced leukocyte infiltration and an increase in the level of microcirculation during this period. The fastest transition from the phase of exudation to proliferation was recorded in the SPN and SPN + SC groups. Histologically, these groups showed faster regeneration, including the epithelialization of wounds. CONCLUSION The results obtained in the course of the study open up possibilities for the development of fundamentally new, highly effective wound healing agents.
Collapse
Affiliation(s)
- Ekaterina Vladimirovna Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victor Aleksandrovich Stupin
- Department of Hospital Surgery No. 1, N.I. Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (S.R.A.); (I.S.A.); (N.V.K.)
| | - Yulia Gennadievna Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, Gubkin str. 3, 119991 Moscow, Russia;
| | - Salekh Rovshanovich Aliev
- Department of Hospital Surgery No. 1, N.I. Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (S.R.A.); (I.S.A.); (N.V.K.)
| | - Igor Sergeevich Abramov
- Department of Hospital Surgery No. 1, N.I. Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (S.R.A.); (I.S.A.); (N.V.K.)
| | - Nikolay Valerievich Khokhlov
- Department of Hospital Surgery No. 1, N.I. Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia; (V.A.S.); (S.R.A.); (I.S.A.); (N.V.K.)
| |
Collapse
|
5
|
Shcherbakov AB, Reukov VV, Yakimansky AV, Krasnopeeva EL, Ivanova OS, Popov AL, Ivanov VK. CeO 2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:924. [PMID: 33802821 PMCID: PMC8002506 DOI: 10.3390/polym13060924] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
The development of advanced composite biomaterials combining the versatility and biodegradability of polymers and the unique characteristics of metal oxide nanoparticles unveils new horizons in emerging biomedical applications, including tissue regeneration, drug delivery and gene therapy, theranostics and medical imaging. Nanocrystalline cerium(IV) oxide, or nanoceria, stands out from a crowd of other metal oxides as being a truly unique material, showing great potential in biomedicine due to its low systemic toxicity and numerous beneficial effects on living systems. The combination of nanoceria with new generations of biomedical polymers, such as PolyHEMA (poly(2-hydroxyethyl methacrylate)-based hydrogels, electrospun nanofibrous polycaprolactone or natural-based chitosan or cellulose, helps to expand the prospective area of applications by facilitating their bioavailability and averting potential negative effects. This review describes recent advances in biomedical polymeric material practices, highlights up-to-the-minute cerium oxide nanoparticle applications, as well as polymer-nanoceria composites, and aims to address the question: how can nanoceria enhance the biomedical potential of modern polymeric materials?
Collapse
Affiliation(s)
- Alexander B. Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Vladimir V. Reukov
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA;
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (A.V.Y.); (E.L.K.)
| | - Olga S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| | - Anton L. Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; (O.S.I.); (A.L.P.)
| |
Collapse
|
6
|
Silina E, Manturova N, Stupin V. Mesenchymal Stem Cells Application in Wound Tissue Healing in Old Animals. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:103-116. [PMID: 33204113 PMCID: PMC7667208 DOI: 10.2147/sccaa.s267967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023]
Abstract
Purpose An assessment of the effectiveness of progenitor mesenchymal stem cell as injections and as part of a polymer hydrogel for the wounds treatment. Materials and Methods Fixed-size wounds (average area of 135.8 mm2) were modeled on the back of white Wistar rats, aged 9 months. Mesenchymal stem cells (MSC) isolated from a human umbilical cord were injected into the wounds once on the modeling day (SC group). In other animals, MSC were periodically applied externally as one of the components in the polymer hydrogel (Polymer_sc group). The systemic effect of the cells was assessed via the analysis of intact contralateral wounds located on the opposite side of the same animal’s back (groups Control_sc and Control_Psc, respectively). The reference intact wounds belonged to the Control_0 group. The wound area was studied in dynamics. Descriptive microscopy was supplemented by an assessment of the collagen fibers’ maturity, the epidermal layers, and the number of fibroblasts and leukocytes in different parts of the wounds. Results Both the local and systemic application of MSC led to an improvement in wound regeneration. During the acute inflammatory phase (up to 3 days), the method and place of application did not affect the dynamics of wound healing. The use of Polymer_sc ultimately demonstrated the best effectiveness. The anti-inflammatory effect of MSC was confirmed by a decrease in leukocyte infiltration in the wound centers (Polymer_sc and SC groups) and edges (all groups, with the greatest extent in the Polymer_sc group). The proliferative phase that expresses itself via accelerated growth in fibroblast number and collagen production was affected in the Control_Psc group and mostly in the Polymer_sc group. Conclusion The applications of MSC in various ways improve and accelerate wound healing even in old animals. The best performance was achieved in the Polymer_sc group.
Collapse
Affiliation(s)
- Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery №1, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|