1
|
Golubev GS, Sokolov SE, Rokhmanka TN, Bakhtin DS, Borisov IL, Volkov AV. Membranes Based on PTMSP and Hypercrosslinked Polystyrene for Gas Separation and Thermopervaporative Removal of Volatile Organic Compounds from Aqueous Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Bermesheva EV, Medentseva EI, Khrychikova AP, Wozniak AI, Guseva MA, Nazarov IV, Morontsev AA, Karpov GO, Topchiy MA, Asachenko AF, Danshina AA, Nelyubina YV, Bermeshev MV. Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniya V. Bermesheva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, building 2, Moscow 119991, Russia
| | - Ekaterina I. Medentseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anna P. Khrychikova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- D.I. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Alyona I. Wozniak
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Marina A. Guseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Alexander A. Morontsev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Gleb O. Karpov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anastasia A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| |
Collapse
|
3
|
Adzhieva OA, Nikiforov RY, Gringolts ML, Belov NA, Filatova MP, Denisova YI, Kudryavtsev YV. Synthesis and Gas Separation Properties of Metathesis Poly(5-perfluorobutyl-2-norbornene). POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Emadodin Shakeri S, Mohammad Mahdi Mortazavi S, Ahmadjo S, Hossein Zohuri G. Synthesis and gas permeation of polynorbornene by dinuclear α–diimine Ni-based catalysts: Experimental and quantum chemistry modeling. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Belov NA, Nikiforov RY, Alentiev AY, Bezgin DA, Blinov IA, Suvorov AV, Kostina JV, Legkov SA, Levin IS, Gringolts ML, Shapagin AV, Aliev AD. Gas Transport and Separation Properties of Polynorbornene Treated with Elemental Fluorine in a Perfluorodecalin Liquid. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621060020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhigarev VA, Gringolts ML, Filatova MP, Finkelshtein ES. Synthesis and Metathesis Polymerization of New Monomer 7-Trimethylsilyltricyclo[4.2.2.02,5]deca-3,9-diene. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hybrid Microporous Polymeric Materials with Outstanding Permeability and Increased Gas Transport Stability: PTMSP Aging Prevention by Sorption of the Polymerization Catalyst on HCPS. Polymers (Basel) 2021; 13:polym13121922. [PMID: 34207865 PMCID: PMC8229280 DOI: 10.3390/polym13121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The influence of hyper-crosslinked polystyrene (HCPS) MacronetTM MN200 on the gas transport properties and aging of the highly permeable glassy polymer poly(1-trimethylsilyl-1-propyne) (PTMSP) was studied and analyzed in detail. The gas transport characteristics of dense PTMSP membranes containing 0-10.0 wt % HCPS were studied. It was shown that the introduction of a small amount of HCPS into the PTMSP matrix led to a 50-60% increase of the permeability coefficients of the material for light gases (N2, O2, CO2) and slowed down the deterioration of polymer transport properties over time. The lowest reduction in gas permeability coefficients (50-57%) was found for PTMSP containing HCPS 5.0 wt % after annealing at 100 °C for 300 h. It was found that HCPS sorbed residues of tantalum-based polymerization catalyst from PTMSP. In order to investigate the influence of catalysts on transport and physical properties of PTMSP, we purified the latter from the polymerization catalyst by addition of 5 wt % HCPS into polymer/chloroform solution. It was shown that sorption on HCPS allowed for almost complete removal of tantalum compounds from PTMSP. The membrane made of PTMSP purified by HCPS demonstrated more stable transport characteristics compared to the membrane made of the initial polymer. HCPS has a complex effect on the aging process of PTMSP. The introduction of HCPS into the polymer matrix not only slowed down the physical aging of PTMSP, but also reduced chemical aging due to removal of active reagents.
Collapse
|
8
|
Wang X, Wilson TJ, Alentiev D, Gringolts M, Finkelshtein E, Bermeshev M, Long BK. Substituted polynorbornene membranes: a modular template for targeted gas separations. Polym Chem 2021. [DOI: 10.1039/d1py00278c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This perspective focuses on substituted polynorbornenes as a promising modular platform to access advanced gas separation membranes, and highlights their synthetic versatility and robust performance.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Chemistry
- University of Tennessee
- Knoxville
- Knoxville
- USA
| | - Trevor J. Wilson
- Department of Chemistry
- University of Tennessee
- Knoxville
- Knoxville
- USA
| | - Dmitry Alentiev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS
- Moscow
- Russia
| | - Maria Gringolts
- A.V. Topchiev Institute of Petrochemical Synthesis RAS
- Moscow
- Russia
| | | | - Maxim Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS
- Moscow
- Russia
| | - Brian K. Long
- Department of Chemistry
- University of Tennessee
- Knoxville
- Knoxville
- USA
| |
Collapse
|