1
|
Lu Y, Guzman S, Rizwan M, Hinkle KR, Gu Z. Orientation-Dependent Anisotropic Desalination by Assembled Zeolite Nanotube Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1921-1926. [PMID: 39815823 DOI: 10.1021/acs.langmuir.4c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties. Two different membrane assemblies are examined to determine the effect of membrane orientation on desalination performance. Interestingly, we find that zeolite nanotube membranes present anisotropic desalination behavior, which is directly dependent on the assembled orientation of the zeolite nanotubes. Specifically, directing the transport through the axial channels of the nanotubes results in a water permeability of 59.8 L/cm2/day/MPa and 88% ion rejection. However, when the membrane is rotated 90° and the flow is directed perpendicular to the tube axis, the permeability drops to 22.3 L/cm2/day/MPa, but 100% ion rejection is achieved. This difference is attributed to the multiscale pore dimensions of the zeolite nanotube; that is, they possess large pores (a diameter of 3 nm) along the axial channel direction, but smaller pores (a diameter of 0.25 nm) along the direction perpendicular to the tube axis. The ion rejection capabilities are further verified by quantifying the free energy barriers to transport obtained via umbrella sampling simulations. Therefore, our findings demonstrate the orientation-dependent, anisotropic desalination performance in assembled zeolite nanotube membranes for the first time, which could be useful in designing future advanced desalination membranes.
Collapse
Affiliation(s)
- Yundi Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Sophia Guzman
- Department of Chemical and Materials Engineering, University of Dayton, Dayton Ohio 45469, United States
| | - Muhammad Rizwan
- Department of Chemical and Materials Engineering, University of Dayton, Dayton Ohio 45469, United States
| | - Kevin R Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton Ohio 45469, United States
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Gortat I, Chruściel JJ, Marszałek J, Żyłła R, Wawrzyniak P. The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation. MEMBRANES 2024; 14:213. [PMID: 39452825 PMCID: PMC11509809 DOI: 10.3390/membranes14100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.% aqueous solution of polyvinyl alcohol (PVA)-using various amounts of cross-linking substances: 50 wt.% aqueous solutions of glutaraldehyde (GA) or citric acid (CA) or a 40 wt.% aqueous solution of glyoxal. An ethylene glycol oligomer (PEG 200) was also used to prepare active layers on PV membranes. Witch its help a chemically cross-linked hydrogel with PVA and cross-linking reagents (CA or GA) was formed and used as an active layer. The manufactured PV membranes (PVA/PSf/PES) were used in the desalination of water with a salinity of 35‱, which corresponds to the average salinity of oceans. The pervaporation method was used to examine the efficiency (productivity and selectivity) of the desalination process. The PV was carried at a temperature of 60 °C and a feed flow rate of 60 dm3/h while the membrane area was 0.005 m2. The following characteristic parameters of the membranes were determined: thickness, hydrophilicity (based on contact angle measurements), density, degree of swelling and cross-linking density and compared with the analogous properties of the initial PS20 backing membrane. The physical microstructure of the cross-section of the membranes was analyzed using scanning electron microscopy (SEM) method.
Collapse
Affiliation(s)
- Izabela Gortat
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Joanna Marszałek
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
| | - Renata Żyłła
- Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland; (J.J.C.); (R.Ż.)
| | - Paweł Wawrzyniak
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland; (I.G.); (P.W.)
| |
Collapse
|
3
|
Liu N, Yao YY, Zhang J, Zhang JG, Wu C, Ouyang DJ, Zou CY, Yang ZQ, Li JX. Reduction characteristic of chlorobenzene by a newly isolated Paenarthrobacter ureafaciens LY from a pharmaceutical wastewater treatment plant. Cell Biochem Funct 2024; 42:e3965. [PMID: 38457283 DOI: 10.1002/cbf.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
A highly efficient chlorobenzene-degrading strain was isolated from the sludge of a sewage treatment plant associated with a pharmaceutical company. The strain exhibited a similarity of over 99.9% with multiple strains of Paenarthrobacter ureafaciens. Therefore, the strain was suggested to be P. ureafaciens LY. This novel strain exhibited a broad spectrum of pollutant degradation capabilities, effectively degrading chlorobenzene and other organic pollutants, such as 1, 2, 4-trichlorobenzene, phenol, and xylene. Moreover, P. ureafaciens LY co-metabolized mixtures of chlorobenzene with 1, 2, 4-trichlorobenzene or phenol. Evaluation of its degradation efficiency showed that it achieved an impressive degradation rate of 94.78% for chlorobenzene within 8 h. The Haldane-Andrews model was used to describe the growth of P. ureafaciens LY under specific pollutants and its concentrations, revealing a maximum specific growth rate (μmax ) of 0.33 h-1 . The isolation and characterization of P. ureafaciens LY, along with its ability to degrade chlorobenzene, provides valuable insights for the development of efficient and eco-friendly approaches to mitigate chlorobenzene contamination. Additionally, investigation of the degradation performance of the strain in the presence of other pollutants offers important information for understanding the complexities of co-metabolism in mixed-pollutant environments.
Collapse
Affiliation(s)
- Nan Liu
- Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, China
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yan-Yan Yao
- Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, China
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jin Zhang
- Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, China
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ji-Guo Zhang
- Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, China
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chao Wu
- Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, China
| | - Du-Juan Ouyang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Chang-Yong Zou
- Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan, China
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhen-Qiang Yang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, China
| | - Ji-Xiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Eljaddi T, Favre E, Roizard D. Design and Preparation a New Composite Hydrophilic/Hydrophobic Membrane for Desalination by Pervaporation. MEMBRANES 2023; 13:599. [PMID: 37367803 DOI: 10.3390/membranes13060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Herein, experimental and theoretical approaches were used to design a new composite membrane for desalination by pervaporation. The theoretical approaches demonstrate the possibility to reach high mass transfer coefficients quite close to those obtained with conventional porous membranes if two conditions are verified: (i) a dense layer with a low thickness and (ii) a support with a high-water permeability. For this purpose, several membranes with a cellulose triacetate (CTA) polymer were prepared and compared with a hydrophobic membrane prepared in a previous study. The composite membranes were tested for several feed conditions, i.e., pure water, brine and saline water containing a surfactant. The results show that, whatever the tested feed, no wetting occurred during several hours of desalination tests. In addition, a steady flux was obtained together with a very high salt rejection (close to 100%) for the CTA membranes. Lastly, the CTA composite membrane was tested with real seawater without any pretreatment. It was shown that the salt rejection was still very high (close to 99.5%) and that no wetting could be detected for several hours. This investigation opens a new direction to prepare specific and sustainable membranes for desalination by pervaporation.
Collapse
Affiliation(s)
- Tarik Eljaddi
- LRGP-Laboratoire Réactions et Génie des Procédés, UMR 7274, 54001 Nancy, France
| | - Eric Favre
- LRGP-Laboratoire Réactions et Génie des Procédés, UMR 7274, 54001 Nancy, France
| | - Denis Roizard
- LRGP-Laboratoire Réactions et Génie des Procédés, UMR 7274, 54001 Nancy, France
| |
Collapse
|
5
|
Kachhadiya DD, Murthy Z. Microfluidic synthesized ZIF-67 decorated PVDF mixed matrix membranes for the pervaporation of toluene/water mixtures. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Xie S, Li Z, Zhu G. Salting-out Effect on the Separation and Purification of Acetic Esters: Salting-out Agents, Theory, and Applications. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2159837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Guodian Zhu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
7
|
Lu X, Huang J, Pinelo M, Chen G, Wan Y, Luo J. Modelling and optimization of pervaporation membrane modules: A critical review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Mali M, Walekar L, Mhamane D, Mali G, Pawar S, Patil V, Parbat H, Gokavi G. Fabrication of ternary polyvinyl alcohol/tetraethyl orthosilicate/silicotungstic acid hybrid membranes for pervaporation dehydration of alcohol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Tabbiche A, Aouinti L, Nait Sidi Ahmed L. Preparation and characterization of mixed matrix membranes based on PVC/Al 2O 3 for the separation of toluene/n-heptane mixtures via pervaporation. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Affaf Tabbiche
- Laboratoire des Eco-Matériaux Fonctionnels et Nanostructurés, Faculté de Chimie, Université des Sciences et de la Technologie d'Oran Mohamed-Boudiaf USTOMB, El Mnaouar, Oran, Algérie
| | - Leila Aouinti
- Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences, Université d’Oran Es-Senia, Oran, Algérie
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Lydia Nait Sidi Ahmed
- Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| |
Collapse
|
10
|
Silvestre WP, Duarte J, Tessaro IC, Baldasso C. Non-Supported and PET-Supported Chitosan Membranes for Pervaporation: Production, Characterization, and Performance. MEMBRANES 2022; 12:930. [PMID: 36295689 PMCID: PMC9607258 DOI: 10.3390/membranes12100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to develop non-supported and PET-supported chitosan membranes that were cross-linked with glutaraldehyde, then evaluate their physical-chemical, morphological, and mechanical properties, and evaluate their performance in the separation of ethanol/water and limonene/linalool synthetic mixtures by hydrophilic and target-organophilic pervaporation, respectively. The presence of a PET layer did not affect most of the physical-chemical parameters of the membranes, but the mechanical properties were enhanced, especially the Young modulus (76 MPa to 398 MPa), tensile strength (16 MPa to 27 MPa), and elongation at break (7% to 26%), rendering the supported membrane more resistant. Regarding the pervaporation tests, no permeate was obtained in target-organophilic pervaporation tests, regardless of membrane type. The support layer influenced the hydrophilic pervaporation parameters of the supported membrane, especially in reducing transmembrane flux (0.397 kg∙m-2∙h-1 to 0.121 kg∙m-2∙h-1) and increasing membrane selectivity (611 to 1974). However, the pervaporation separation index has not differed between membranes (228 for the non-supported and 218 for the PET-supported membrane), indicating that, overall, both membranes had a similar performance. Thus, the applicability of each membrane is linked to specific applications that require a more resistant membrane, greater transmembrane fluxes, and higher selectivity.
Collapse
Affiliation(s)
- Wendel Paulo Silvestre
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Jocelei Duarte
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Isabel Cristina Tessaro
- Postgraduate Program in Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Camila Baldasso
- Postgraduate Program in Process Engineering and Technologies, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
11
|
Lee JY, Huang TY, Belle Marie Yap Ang M, Huang SH, Tsai HA, Jeng RJ. Effects of monomer rigidity on microstructures and properties of novel polyamide thin-film composite membranes prepared through interfacial polymerization for pervaporation dehydration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhang W, Guo L, Liu Q, Yang M, Chen J, Lei Z. Preparation and properties of a biodegradability superabsorbent composite based on flax cake protein‐g‐poly (acrylic acid)/Kaolinite. J Appl Polym Sci 2022. [DOI: 10.1002/app.51975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenxu Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Lulu Guo
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Qian Liu
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Mei Yang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Jing Chen
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| | - Ziqiang Lei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
13
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
14
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Qu Q, Wang H, He J, Da Y, Zhu M, Liu Y, Tian X. Synthesis and properties of responsive self-healing polyurethane containing dynamic disulfide bonds. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211022818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The polymers with pH responsiveness and temperature sensitivity exhibit important applications in many fields. To endow the responsive polymers with self-healing is meaningful work, which contributes to increase their service life and reduce waste of resources significantly. In this research, a series of pH-responsive polyurethanes containing dynamic disulfide bonds and carboxylic acid functional groups were prepared by mixing polycaprolactone diol (PCL), hexamethylene diisocyanate (HDI), 2,2-dimethylolbutyric acid, and bis(2-hydroxyethyl) disulfide. The structure of the polymer was confirmed by some characterization methods such as infrared absorption spectroscopy, Raman scattering spectroscopy, X-ray diffraction, and differential scanning calorimetry. Many performances of the polymer such as the contact angle, thermal stability, mechanics, and self-healing properties can be adjusted by changing the functional units of polyurethanes. The dynamic disulfide bonds in the main chain were observed no harm to the pH response performance, instead which were beneficial to the promotion of heat resistance, tensile properties, and self-healing performance of polyurethane. The elongation at break and the tensile strength are increased by 85.3% and 54.9%, respectively. All the polyurethane exhibited considerable self-healing effects at 110°C, with the highest healing efficiency reaching 93.7%, as a result of the dissociation of hydrogen bonds and the exchange reaction of disulfide bonds.
Collapse
Affiliation(s)
- Qiqi Qu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Hua Wang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Jing He
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Yunsheng Da
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Menghan Zhu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
16
|
Lee JY, Zhan JY, Ang MBMY, Yeh SC, Tsai HA, Jeng RJ. Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mishra MK, Jain M. Removal of sulfur‐containing compounds from Fluid Catalytic Cracking unit (FCC) gasoline by pervaporation process: Effects of variations in feed characteristics and mass transfer properties of the membrane. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukesh K. Mishra
- Department of Applied Chemistry Delhi Technological University New Delhi India
| | - Manish Jain
- Department of Applied Chemistry Delhi Technological University New Delhi India
| |
Collapse
|
18
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Elrasheedy A, Rabie M, El-Shazly A, Bassyouni M, Abdel-Hamid S, El Kady MF. Numerical Investigation of Fabricated MWCNTs/Polystyrene Nanofibrous Membrane for DCMD. Polymers (Basel) 2021; 13:polym13010160. [PMID: 33406737 PMCID: PMC7795322 DOI: 10.3390/polym13010160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of compositing multiwalled carbon nanotubes (MWCNTs) with polystyrene (PS) to fabricate nanofibrous membrane by electrospinning technique and comparing the direct contact membrane distillation (DCMD) performance of the blank and composite membranes is evaluated numerically. Surface morphology of both the pristine and the composite membrane was studied by SEM imaging while the average fiber diameter and average pore size were measured using ImageJ software. Static water contact angle and porosities were also determined for both membranes. Results showed significant enhancement in both the hydrophobicity and porosity of the composite membrane by increasing the static water contact angle from 145.4° for the pristine PS membrane to 155° for the PS/MWCNTs composite membrane while the porosity was increased by 28%. Simulation results showed that at any given feed inlet temperature, the PS/MWCNTs membrane have higher permeate flux and better overall system performance.
Collapse
Affiliation(s)
- Asmaa Elrasheedy
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - Mohammed Rabie
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Mechanical Power Engineering, Mansoura University, El-Mansoura 35516, Egypt
| | - Ahmed El-Shazly
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Chemical Engineering Department, Faculty of Engineering Department, Alexandria University, Alexandria 21544, Egypt
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, Zewail University of Science and Technology, City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: (A.E.); (M.B.); Tel.: +20-10-9815-1351 (A.E.); +20-11-5967-5357 (M.B.)
| | - S.M.S. Abdel-Hamid
- Department of Chemical Engineering, the Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam City 3056, Egypt;
| | - Marwa F. El Kady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt; (M.R.); (A.E.-S.); (M.F.E.K.)
- Polymeric Materials Research Department, City of Scientific Research and Technological Applications (SRTA-City), Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
20
|
Ang MBMY, Huang SH, Wei SW, Chiao YH, Aquino RR, Hung WS, Tsai HA, Lee KR, Lai JY. Surface Properties, Free Volume, and Performance for Thin-Film Composite Pervaporation Membranes Fabricated through Interfacial Polymerization Involving Different Organic Solvents. Polymers (Basel) 2020; 12:E2326. [PMID: 33053660 PMCID: PMC7601289 DOI: 10.3390/polym12102326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The type of organic solvents used in interfacial polymerization affects the surface property, free volume, and separation performance of the thin-film composite (TFC) polyamide membrane. In this study, TFC polyamide membrane was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC). Four types of organic solvent were explored in the preparation of pervaporation membrane. These are tetralin, toluene, hexane, and isopentane. The solubility parameter distance between organic solvents and DETA follows in increasing order: tetralin (17.07 MPa1/2) < toluene (17.31 MPa1/2) < hexane (19.86 MPa1/2) < isopentane (20.43 MPa1/2). Same trend was also observed between the organic solvents and DETA. The larger the solubility parameter distance, the denser and thicker the polyamide. Consequently, field emission scanning electron microscope (FESEM) and positron annihilation spectroscopy (PAS) analysis revealed that TFCisopentane had the thickest polyamide layer. It also delivered the highest pervaporation efficiency (permeation flux = 860 ± 71 g m-2 h-1; water concentration in permeate = 99.2 ± 0.8 wt%; pervaporation separation index = 959,760) at dehydration of 90 wt% aqueous ethanol solution. Furthermore, TFCisopentane also exhibited a high separation efficiency in isopropanol and tert-butanol. Therefore, a suitable organic solvent in preparation of TFC membrane through interfacial polymerization enables high pervaporation efficiency.
Collapse
Affiliation(s)
- Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan
| | - Shi-Wei Wei
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Yu-Hsuan Chiao
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ruth R. Aquino
- General Education Department, Colegio de Muntinlupa, Mayor J. Posadas Avenue, Sucat, Muntinlupa City 1770, Metro Manila, Philippines;
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Wei-Song Hung
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-An Tsai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (S.-W.W.); (Y.-H.C.); (W.-S.H.); (K.-R.L.); (J.-Y.L.)
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|