1
|
Negi A. Environmental Impact of Textile Materials: Challenges in Fiber-Dye Chemistry and Implication of Microbial Biodegradation. Polymers (Basel) 2025; 17:871. [PMID: 40219261 PMCID: PMC11991193 DOI: 10.3390/polym17070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides (like nylon). Due to significant differences in their chemistry, distinct dyeing processes are required, each generating specific waste. For example, cellulose fibers exhibit chemical inertness toward dyes, necessitating chemical auxiliaries that contribute to wastewater contamination, whereas synthetic fibers are a major source of non-biodegradable microplastic emissions. Addressing the environmental impact of fiber processing requires a deep molecular-level understanding to enable informed decision-making. This manuscript emphasizes potential solutions, particularly through the biodegradation of textile materials and related chemical waste, aligning with the United Nations Sustainable Development Goal 6, which promotes clean water and sanitation. For instance, cost-effective methods using enzymes or microbes can aid in processing the fibers and their associated dyeing solutions while also addressing textile wastewater, which contains high concentrations of unreacted dyes, salts, and other highly water-soluble pollutants. This paper covers different aspects of fiber chemistry, dyeing, degradation mechanisms, and the chemical waste produced by the textile industry, while highlighting microbial-based strategies for waste mitigation. The integration of microbes not only offers a solution for managing large volumes of textile waste but also paves the way for sustainable technologies.
Collapse
Affiliation(s)
- Arvind Negi
- Faculty of Educational Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
3
|
Seitz M, Rihm R, Bonten C. Degradation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reinforced with Regenerated Cellulose Fibers. Polymers (Basel) 2024; 16:2070. [PMID: 39065387 PMCID: PMC11281018 DOI: 10.3390/polym16142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
PHBV is a promising plastic for replacing conventional petroleum-based plastics in the future. However, the mechanical properties of PHBV are too low for use in high-stress applications and the degradation of the polymer limits possible applications. In this work, the mechanical properties were, therefore, increased using bio-based regenerated cellulose fibers and degradation processes of the PHBV-RCF composites were detected in accelerated aging tests under various environmental conditions. Mechanical, optical, rheological and thermal analysis methods were used for this characterization. The fibers significantly increased the mechanical properties, in particular the impact strength. Different degradation mechanisms were identified. UV radiation caused the test specimens to fade significantly, but no reduction in mechanical properties was observed. After storage in water and in aqueous solutions, the mechanical properties of the compounds were significantly reduced. The reason for this was assumed to be hydrolytic degradation catalyzed by higher temperatures. The hydrolytic degradation of PHBV was mainly caused by erosion from the test specimen surface. By exposing the regenerated cellulose fibers, this effect could now also be visually verified. For the use of regenerated cellulose fiber-reinforced PHBV in more durable applications, the aging mechanisms that occur must be prevented in the future through the use of stabilizers.
Collapse
Affiliation(s)
- Michael Seitz
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Rainer Rihm
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Christian Bonten
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Oliver-Ortega H, Evon P, Espinach FX, Raynaud C, Méndez JA. Polyhydroxy-3-Butyrate (PHB)-Based Composite Materials Reinforced with Cellulosic Fibers, Obtained from Barley Waste Straw, to Produce Pieces for Agriculture Applications: Production, Characterization and Scale-Up Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1901. [PMID: 38673258 PMCID: PMC11052125 DOI: 10.3390/ma17081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Cellulosic fibers obtained from Barley straw were utilized to reinforce PHB. Four different processed fibers were employed as reinforcing material: sawdust (SW), defibered (DFBF), delignified (DBF), and bleached (BBF) fibers. The composite was processed from two different perspectives: a discontinuous (bach) and an intensification process (extrusion). Once processed and transformed into final shape specimens, the materials were characterized by mechanical testing (tensile mode), scanning electron microscopy, and theoretical simulations by finite elements analysis (FEA). In terms of mechanical properties, only the elastic moduli (Et) exhibited results ranging from 37% to 170%, depending on the reinforcement composition. Conversely, strengths at break, under both tensile and bending tests, tended to decrease, indicating poor affinity between the components. Due to the mechanical treatment applied on the fiber, DFBF emerged as the most promising filler, with mechanical properties closest to those of neat PHB. DFBF-based composites were subsequently produced through process intensification using a twin-screw extruder, and molded into flowerpots. Mechanical results showed almost identical properties between the discontinuous and intensification processes. The suitability of the material for agriculture flowerpots was demonstrated through finite analysis simulation (FEA), which revealed that the maximum von Mises stresses (5.38 × 105 N/m2) and deformations (0.048 mm) were well below the limits of the composite materials.
Collapse
Affiliation(s)
- Helena Oliver-Ortega
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain;
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Colom 15, 08222 Terrassa, Spain
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, ENSIACET (École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologique), INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France;
| | - Francesc Xavier Espinach
- LEPAMAP-PRODIS Group, Department of Chemical Engineering, University of Girona, C/M. Aurèlia Capmany, 61, 17003 Girona, Spain;
| | - Christine Raynaud
- Centre d’Application et de Traitement des Agroressources (CATAR), Toulouse-INP, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France;
| | - José Alberto Méndez
- LEPAMAP-PRODIS Group, Department of Chemical Engineering, University of Girona, C/M. Aurèlia Capmany, 61, 17003 Girona, Spain;
| |
Collapse
|
5
|
Al G, Aydemir D, Altuntaş E. The effects of PHB-g-MA types on the mechanical, thermal, morphological, structural, and rheological properties of polyhydroxybutyrate biopolymers. Int J Biol Macromol 2024; 264:130745. [PMID: 38462104 DOI: 10.1016/j.ijbiomac.2024.130745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study investigates the grafting of polyhydroxybutyrate (PHB) chains with maleic anhydride (MA) in concentrations ranging from 5 % to 10 % by weight. This process was conducted during microwave treatment and using a reactive extruder, employing benzoyl peroxide (BPO) as the initiator. The impact of these methods on PHB's overall properties was thoroughly investigated. In the study, PHB-g-MA was incorporated into neat PHB via the extrusion process at a 5 % loading rate. Notably, the mechanical properties exhibited an increase in the presence of PHB-g-MA, likely due to morphological improvements in the neat PHB, as indicated by morphological characterization. X-ray diffraction results indicated crystallinity percentages increase with the addition of MA. Differential scanning calorimetry revealed minimal variation in melting and crystallization temperatures when PHB-g-MA was included. Both storage and loss moduli were enhanced by the incorporation of PHB-g-MA, and the blends exhibited consistent tan delta values. Regarding rheological properties, the storage and loss moduli of PHB blends containing PHB-g-MA blends were observed to rise with rising frequency values. Based on these results, the microwave process was identified as the most effective method for grafting.
Collapse
Affiliation(s)
- Gulyaz Al
- Vocational School of Technical Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkiye; Faculty of Forestry, Department of Forest Industrial Engineering, Bartin University, Bartin, Turkiye.
| | - Deniz Aydemir
- Faculty of Forestry, Department of Forest Industrial Engineering, Bartin University, Bartin, Turkiye.
| | - Ertugrul Altuntaş
- Faculty of Forestry, Department of Forest Industrial Engineering, Sutcu Imam University, Kahramanmaraş, Turkey.
| |
Collapse
|
6
|
Samaniego-Aguilar K, Sánchez-Safont E, Rodríguez A, Marín A, Candal MV, Cabedo L, Gamez-Perez J. Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications. Polymers (Basel) 2023; 15:4507. [PMID: 38231949 PMCID: PMC10707919 DOI: 10.3390/polym15234507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 01/19/2024] Open
Abstract
Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber-matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of "pull-out". Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.
Collapse
Affiliation(s)
- Kerly Samaniego-Aguilar
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| | - Andreina Rodríguez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
| | - María V. Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain;
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| | - Jose Gamez-Perez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain; (K.S.-A.); (E.S.-S.); (A.R.); (A.M.); (L.C.)
- CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
| |
Collapse
|
7
|
Song W, Yang Z, Zhang S, Fei B, Zhao R. Properties enhancement of poly(β-hydroxybutyrate) biocomposites by incorporating surface-modified wheat straw flour: Effect of pretreatment methods. Int J Biol Macromol 2023; 232:123456. [PMID: 36716838 DOI: 10.1016/j.ijbiomac.2023.123456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) biocomposites filled with wheat straw flour (WSF) were enhanced through modifying WSF surface by pretreatments, i.e., alkali solution (NaOH 1-7 wt%) dipping, (3-aminopropyl)triethoxysilane solution (APTES 0.5-2 wt%) soaking, or NaOH+APTES synergistic impregnation. The WSF was characterized by microscopy, spectroscopy, diffractometry, thermogravimetry, and wetting. Through different levels of surface etching effect or grafting functional groups, all the pretreatments removed unstable, amorphous substances on WSF, obtaining higher crystallinity by 2-12 %, degradation temperature by 57-83 °C, and lower water contact angle by 7-24°. Compression-molded WSF/PHB biocomposites were examined by mechanical tests, microscopy (fracture morphology), water absorption, calorimetry, and thermogravimetry. Above pretreatments boosted mechanical-, moisture-, and heat-resistances of composites, owing to stronger interfacial interaction of PHB with surface-modified WSF, and the improved physicochemical properties of WSF itself. Alkali treatment worked better in raising mechanical, waterproof behaviors, while silane induced higher temperature for phase transition, decomposition. Enhancement achieved by alkali+silane could surpassed both single treatments. The best outcome occurred in 3 wt% NaOH + 0.5 wt% APTES, which increased strength (flexural, tensile, and impact), modulus (flexural, tensile) by 22-40 % and 14-23 %, respectively, decreased 300 h-water absorption by 18 %, and rose melting, degradation temperatures by 2 and 23 °C, respectively, showing new potential for construction-related application.
Collapse
Affiliation(s)
- Wei Song
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China; Beijing Key Laboratory of Wood Science and Engineering/MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zexun Yang
- Beijing Key Laboratory of Wood Science and Engineering/MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Beijing Key Laboratory of Wood Science and Engineering/MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Benhua Fei
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China.
| | - Rongjun Zhao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
8
|
Agrawal L, Vimal SK, Barzaghi P, Shiga T, Terenzio M. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200315. [PMID: 36114714 DOI: 10.1002/mabi.202200315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/15/2023]
Abstract
Due to the severity of peripheral nerve injuries (PNI) and spinal cord injuries (SCI), treatment options for patients are limited. In this context, biomaterials designed to promote regeneration and reinstate the lost function are being explored. Such biomaterials should be able to mimic the biological, chemical, and physical cues of the extracellular matrix for maximum effectiveness as therapeutic agents. Development of biomaterials with desirable physical, chemical, and electrical properties, however, has proven challenging. Here a novel biomaterial formulation achieved by blending the pigment melanin and the natural polymer Poly-3-hydroxybutyrate (PHB) is proposed. Physio-chemical measurements of electrospun fibers reveal a feature rich surface nano-topography, a semiconducting-nature, and brain-tissue-like poroviscoelastic properties. Resulting fibers improve cell adhesion and growth of mouse sensory and motor neurons, without any observable toxicity. Further, the presence of polar functional groups positively affect the kinetics of fibers degradation at a pH (≈7.4) comparable to that of body fluids. Thus, melanin-PHB blended scaffolds are found to be physio-chemically, electrically, and biologically compatible with neural tissues and could be used as a regenerative modality for neural tissue injuries. A biomaterial for scaffolds intended to promote regeneration of nerve tissue after injury is developed. This biomaterial, obtained by mixing the pigment melanin and the natural polymer PHB, is biodegradable, electrically conductive, and beneficial to the growth of motor and sensory neurons. Thus, it is believed that this biomaterial can be used in the context of healthcare applications.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan.,Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China.,Universidad Integral del Caribe y América Latina, Kaminda Cas Grandi #79, Willemstad, Curacao
| | - Paolo Barzaghi
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.,Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| |
Collapse
|
9
|
McCaffrey Z, Cal A, Torres L, Chiou BS, Wood D, Williams T, Orts W. Polyhydroxybutyrate Rice Hull and Torrefied Rice Hull Biocomposites. Polymers (Basel) 2022; 14:polym14183882. [PMID: 36146029 PMCID: PMC9501343 DOI: 10.3390/polym14183882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetric analysis, differential scanning calorimetry, FTIR analysis, CHNSO analysis, and mechanical testing. Heat distortion temperature of the RRH composites were 16–22 °C higher than TRH composites. The RRH composite samples showed a 50–60% increase in flexural modulus and 5% increase in stress at yield compared to PHB, while TRH composite samples showed nearly equal flexural modulus and a 24% decrease in stress at yield. The improved mechanical properties of the RRH composites in comparison to TRH composites were due to better particle-matrix adhesion. FTIR analysis showed RRH particles contained more surface functional groups containing oxygen than TRH particles, indicating that RRHs should be more compatible with the polar PHB plastic. SEM images showed space between filler and plastic in TRH composites and better wetted filler particles in the RRH composites.
Collapse
Affiliation(s)
- Zach McCaffrey
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
- Correspondence:
| | - Andrew Cal
- Mango Materials, 490 Lake Park Ave, Oakland, CA 94610, USA
| | - Lennard Torres
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Bor-Sen Chiou
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Delilah Wood
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - Tina Williams
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| | - William Orts
- Agricultural Research Service, US Department of Agriculture 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
10
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Källbom SK, Helgesson D, Olsson RT, Hedenqvist MS. Vacuum formed bio‐based composite materials using polyolefin and thermally modified wood powder. J Appl Polym Sci 2022. [DOI: 10.1002/app.52630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Susanna K. Källbom
- Division of Polymeric Materials, Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | | | - Richard T. Olsson
- Division of Polymeric Materials, Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Mikael S. Hedenqvist
- Division of Polymeric Materials, Department of Fibre and Polymer Technology KTH Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
13
|
Role of Plasticizers on PHB/bio-TPE Blends Compatibilized by Reactive Extrusion. MATERIALS 2022; 15:ma15031226. [PMID: 35161170 PMCID: PMC8840646 DOI: 10.3390/ma15031226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
Poly(hydroxybutyrate) (PHB) is a biopolymer biologically synthesized by controlled bacterial fermentation from a wide variety of microorganisms. PHB is proposed as a potential green alternative to commonly used plastics in packaging, due to its biodegradability and biocompatibility. However, if PHB is to replace commodities, it has some limitations regarding its thermo-mechanical performance to overcome. Among them are its critically the low toughness values at room temperature and poor thermoforming ability. With the aim of overcoming these weaknesses, in this work, blends of PHB with the addition of a biodegradable thermoplastic elastomer (bio-TPE) were prepared and evaluated. Films of such compounds were made by cast extrusion. In order to enhance the compatibility of both polymers during the extrusion process, three different reactive agents (poly-hexametylene diisocianate, triglycidyl isocyanurate, and Joncryl® ADR-4368) were assessed. The morphology and mechanical- and thermal properties of the films obtained were analyzed. In addition, the thermoforming ability of the produced films was evaluated. The results show that the plasticizers present in the bio-TPE interacted with the reactive agents, making them chemical competitors and altering the outcome of the blends.
Collapse
|
14
|
Eraslan K, Aversa C, Nofar M, Barletta M, Gisario A, Salehiyan R, Alkan Goksu Y. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): synthesis, properties, and applications - A Review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Popa MS, Frone AN, Radu IC, Stanescu PO, Truşcă R, Rădiţoiu V, Nicolae CA, Gabor AR, Panaitescu DM. Microfibrillated Cellulose Grafted with Metacrylic Acid as a Modifier in Poly(3-hydroxybutyrate). Polymers (Basel) 2021; 13:polym13223970. [PMID: 34833269 PMCID: PMC8624960 DOI: 10.3390/polym13223970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
This work proposes a new method for obtaining poly(3-hydroxybutyrate) (PHB)/microfibrillated cellulose (MC) composites with more balanced properties intended for the substitution of petroleum-based polymers in packaging and engineering applications. To achieve this, the MC surface was adjusted by a new chemical route to enhance its compatibility with the PHB matrix: (i) creating active sites on the surface of MC with γ-methacryloxypropyltrimethoxysilane (SIMA) or vinyltriethoxysilane (SIV), followed by (ii) the graft polymerization of methacrylic acid (MA). The high efficiency of the SIMA-MA treatment and the lower efficiency in the case of SIV-MA were proven by the changes observed in the Fourier transform infrared FTIR spectra of celluloses. All modified celluloses and the PHB composites containing them showed good thermal stability close to the processing temperature of PHB. SIMA-modified celluloses acted as nucleating agents in PHB, increasing its crystallinity and favoring the formation of smaller spherulites. A uniform dispersion of SIMA-modified celluloses in PHB as a result of the good compatibility between the two phases was observed by scanning electron microscopy and many agglomerations of fibers in the composite with unmodified MC. The dual role of SIMA-MA treatment, as both compatibilizer and plasticizer, was pointed out by mechanical and rheological measurements. This new method to modify MC and obtain PHB/MC composites with more balanced stiffness–toughness properties could be a solution to the high brittleness and poor processability of PHB-based materials.
Collapse
Affiliation(s)
- Marius Stelian Popa
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (I.C.R.); (P.O.S.)
| | - Adriana Nicoleta Frone
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
| | - Ionut Cristian Radu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (I.C.R.); (P.O.S.)
| | - Paul Octavian Stanescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (I.C.R.); (P.O.S.)
| | - Roxana Truşcă
- National Research Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 313 Spl. Indendentei, 060042 Bucharest, Romania;
| | - Valentin Rădiţoiu
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
| | - Cristian Andi Nicolae
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
| | - Augusta Raluca Gabor
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
| | - Denis Mihaela Panaitescu
- Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 SplaiulIndependentei, 060021 Bucharest, Romania; (M.S.P.); (A.N.F.); (V.R.); (C.A.N.); (A.R.G.)
- Correspondence:
| |
Collapse
|
16
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|