1
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
2
|
Krzyżostan M, Wawrzyńczak A, Nowak I. Controlled Release of Madecassoside and Asiaticoside of Centella asiatica L. Origin from Sustainable Cold-Processed Topical Formulations. Molecules 2024; 29:5583. [PMID: 39683743 DOI: 10.3390/molecules29235583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Centella asiatica L. extract is a promising natural agent for the treatment of atopic dermatitis. It significantly reduces inflammation due to its immunomodulatory properties, mainly attributed to the presence of pentacyclic triterpenes, namely madecassoside and asiaticoside. Their incorporation into sustainable cold-processed topical formulations, such as emollient-rich emulsions and cosmetic gel containing natural hydrophilic polymers, should inhibit inflammation in atopic skin. Therefore, the objective of this study is to investigate the controlled release of madecassoside and asiaticoside isolated from Centella asiatica L., loaded into topical formulations, namely emollient-rich O/W and W/O emulsions and cosmetic gel, which could support the treatment of atopic dermatitis. The carriers of active substances have been prepared with sustainable emulsifiers, active substances, and emollients obtained by green technologies from food industry wastes. Low-energy methods during the carrier emulsification process were applied to reduce carbon footprints and preserve the valuable properties of the raw materials used. The influence of the Centella asiatica L. extract on the physicochemical properties of the formulations was studied, showing a satisfactory degree of stability of the formulations obtained. Moreover, factors that may influence the mechanism and kinetics of the release of madecassoside and asiaticoside, such as the concentration of the active substance, the pH of the dissolution medium, and the type of the carrier, have been tested and widely discussed.
Collapse
Affiliation(s)
- Monika Krzyżostan
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Dr Koziej Instytut Badań Kosmetyków, Czerniakowska 58, 00-717 Warsaw, Poland
| | - Agata Wawrzyńczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Mouro C, Gouveia IC. Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation. Crit Rev Biotechnol 2024; 44:641-659. [PMID: 37156536 DOI: 10.1080/07388551.2023.2193859] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.
Collapse
Affiliation(s)
- Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| | - Isabel C Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Wang Y, Wang X, Zhou D, Xia X, Zhou H, Wang Y, Ke H. Preparation and Characterization of Polycaprolactone (PCL) Antimicrobial Wound Dressing Loaded with Pomegranate Peel Extract. ACS OMEGA 2023; 8:20323-20331. [PMID: 37332800 PMCID: PMC10268609 DOI: 10.1021/acsomega.2c08180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
In recent years, medicinal plant extracts have received remarkable attention due to their wound-healing properties. In this study, polycaprolactone (PCL) electrospun nanofiber membranes incorporated with different concentrations of pomegranate peel extract (PPE) were prepared. The results of the SEM and FTIR experiments demonstrated that the morphology of nanofiber is smooth, fine, and bead-free, and the PPE was well introduced into the nanofiber membranes. Moreover, the outcomes of the mechanical property tests demonstrated that the nanofiber membrane made of PCL and loaded with PPE exhibited remarkable mechanical characteristics, indicating that it could fulfill the essential mechanical requisites for wound dressings. The findings of the in vitro drug release investigations indicated that PPE was instantly released within 20 h and subsequently released gradually over an extended period by the composite nanofiber membranes. Meanwhile, the DPPH radical scavenging test confirmed that the nanofiber membranes loaded with PPE exhibited significant antioxidant properties. Antimicrobial experiments showed higher PPE loading, and the nanofiber membranes showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. The results of the cellular experiments showed that the composite nanofiber membranes were nontoxic and promoted the proliferation of L929 cells. In summary, electrospun nanofiber membranes loaded with PPE can be used as a wound dressing.
Collapse
Affiliation(s)
- Yize Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xianzhu Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Dan Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xin Xia
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huimin Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Ying Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huizhen Ke
- College
of Fashion and Art Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-Loaded Nanofibrous Meshes as Wound Dressings: A Concise Review. Pharmaceutics 2023; 15:pharmaceutics15041058. [PMID: 37111544 PMCID: PMC10143731 DOI: 10.3390/pharmaceutics15041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
In the past, wounds were treated with natural materials, but modern wound dressings include functional elements to expedite the process of healing and to improve skin recovery. Due to their exceptional properties, nanofibrous wound dressings are now the most cutting-edge and desirable option. Similar in structure to the skin’s own extracellular matrix (ECM), these dressings can promote tissue regeneration, wound fluid transportation, and air ductility for cellular proliferation and regeneration owing to their nanostructured fibrous meshes or scaffolds. Many academic search engines and databases, such as Google Scholar, PubMed, and Sciencedirect, were used to conduct a comprehensive evaluation of the literature for the purposes of this investigation. Using the term “nanofibrous meshes” as a keyword, this paper focuses on the importance of phytoconstituents. This review article summarizes the most recent developments and conclusions from studies on bioactive nanofibrous wound dressings infused with medicinal plants. Several wound-healing methods, wound-dressing materials, and wound-healing components derived from medicinal plants were also discussed.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Correspondence: (V.P.); (P.K.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Correspondence: (V.P.); (P.K.)
| |
Collapse
|
6
|
Su S, Bedir T, Kalkandelen C, Sasmazel HT, Basar AO, Chen J, Ekren N, Gunduz O. A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. EMERGENT MATERIALS 2022; 5:1617-1627. [DOI: 10.1007/s42247-022-00418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2025]
|
7
|
Amorim LFA, Fangueiro R, Gouveia IC. Novel functional material incorporating flexirubin‐type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T) University of Minho Guimarães Portugal
| | - Isabel C. Gouveia
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| |
Collapse
|
8
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
9
|
Guo S, Jiang W, Shen L, Zhang G, Gao Y, Yang Y, Yu DG. Electrospun Hybrid Films for Fast and Convenient Delivery of Active Herb Extracts. MEMBRANES 2022; 12:membranes12040398. [PMID: 35448368 PMCID: PMC9031211 DOI: 10.3390/membranes12040398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
Abstract
Herb medicines are popular for safe application due to being a source of natural herbs. However, how to deliver them in an efficacious and convenient manner poses a big challenge to researchers. In this study, a new concept is demonstrated that the electrospun polymer-based hybrid films can be a platform for promoting the delivery of a mixture of active herb extract, i.e., Lianhua Qingwen Keli (LQK), also a commercial traditional Chinese patent medicine. The LQK can be co-dissolved with the filament-forming polymeric polyvinylpyrrolidone K60 and a sweeter sucralose to prepare an electrospinnable solution. A handheld electrospinning apparatus was explored to transfer the solution into solid nanofibers, i.e., the LQK-loaded medicated films. These films were demonstrated to be composed of linear nanofibers. A puncher was utilized to transfer the mat into circular membrane a diameter of 15 mm. Two self-created methods were developed for disclosing the dissolution performances of the electrospun mats. Both the water droplet experiments and the wet paper (mimic tongue) experiments verified that the hybrid films can rapidly disintegrate when they encounter water and release the loaded LQK in an immediate manner. Based on the reasonable selections of polymeric excipients, the present protocols pave a way for delivering many types of active herb extracts in an effective and convenient manner.
Collapse
Affiliation(s)
- Shiri Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Wenlai Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Liangfei Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Gaoyi Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiman Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
| | - Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Correspondence: (Y.Y.); (D.-G.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (S.G.); (W.J.); (L.S.); (Y.G.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (Y.Y.); (D.-G.Y.)
| |
Collapse
|
10
|
Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles. Polymers (Basel) 2022; 14:polym14030597. [PMID: 35160586 PMCID: PMC8838177 DOI: 10.3390/polym14030597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
The connection with textiles is one of the oldest traditions in humanity, and in the historical scenario, textiles and clothing deal with material culture. Therefore, preservation is of the utmost importance to keep this important heritage. Packaging and protection of museological textiles is imperative due to the risks that these articles suffer, mainly concerning the attack of microorganisms that promote the acceleration of their degradation, and it is still necessary to create a proper packing material. In the present work we describe a bibliographic review about the museological scenario, focused on the packaging for preservation of textile articles, as well as the techniques usually used in preventive material conservation. Future perpsctives for the improvement in the conservation of museological textiles are also given. This research aims to produce a sustainable material based on polycaprolactone (PCL), with and without antimicrobial function by incorporating Lavandula luisieri essential oil (EO), in the form of a non-woven substrate for museological packaging. A comparison was made with the most frequently used materials, such as raw cotton and a non-woven polyester. The results demonstrated that both PCL and PCL + EO obtained a good characterization for museological application with good breaking strength and excellent whiteness index. In addition, PCL + EO showed a high bacterial reduction when compared with other protective materials frequently used in museums. Therefore, these findings emphasize the potential use of this material as an innovative protective antibacterial museological packaging solution, able to safeguard and preserve textile museum and clothing collections for longer and for future generations.
Collapse
|
11
|
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release. Polymers (Basel) 2021; 13:polym13244286. [PMID: 34960834 PMCID: PMC8708694 DOI: 10.3390/polym13244286] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/19/2023] Open
Abstract
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning processes. The developed acyclovir-polyacrylonitrile at the acyclovir nanohybrids was loaded with various amounts of acyclovir, which could be realized simply by adjusting the sheath fluid flow rates. Compared with the electrospun composite nanofibers from a single-fluid blending process, the nanohybrids showed advantages of modifying the acyclovir release profiles in the following aspects: (1) the initial release amount was more accurately and intentionally controlled; (2) the later sustained release was nearer to a zero-order kinetic process; and (3) the release amounts at different stages could be easily allocated by the sheath fluid flow rate. X-ray diffraction results verified that the acyclovir nanoparticles were in a crystalline state, and Fourier-transform infrared spectra verified that the drug acyclovir and the polymer polyacrylonitrile had a good compatibility. The protocols reported here could pave the way for developing new types of functional nanostructures.
Collapse
|
12
|
Orodispersible Membranes from a Modified Coaxial Electrospinning for Fast Dissolution of Diclofenac Sodium. MEMBRANES 2021; 11:membranes11110802. [PMID: 34832031 PMCID: PMC8622798 DOI: 10.3390/membranes11110802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023]
Abstract
The dissolution of poorly water-soluble drugs has been a longstanding and important issue in pharmaceutics during the past several decades. Nanotechnologies and their products have been broadly investigated for providing novel strategies for resolving this problem. In the present study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented for the preparation of membranes, during which an unspinnable solution of sucralose was explored as the sheath working fluid for smoothing the working processes and also adjusting the taste of membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution measurements and simulated artificial tongue experiments verified that the OMs were able to release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for oral administration.
Collapse
|
13
|
Zhao K, Kang SX, Yang YY, Yu DG. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers (Basel) 2021; 13:E226. [PMID: 33440744 PMCID: PMC7827756 DOI: 10.3390/polym13020226] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
As a new kind of water pollutant, antibiotics have encouraged researchers to develop new treatment technologies. Electrospun fiber membrane shows excellent benefits in antibiotic removal in water due to its advantages of large specific surface area, high porosity, good connectivity, easy surface modification and new functions. This review introduces the four aspects of electrospinning technology, namely, initial development history, working principle, influencing factors and process types. The preparation technologies of electrospun functional fiber membranes are then summarized. Finally, recent studies about antibiotic removal by electrospun functional fiber membrane are reviewed from three aspects, namely, adsorption, photocatalysis and biodegradation. Future research demand is also recommended.
Collapse
Affiliation(s)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, 516 Jun-Gong Road, Shanghai 200093, China; (K.Z.); (S.-X.K.); (Y.-Y.Y.)
| |
Collapse
|
14
|
Mouro C, Gomes AP, Gouveia IC. Double‐layer
PLLA
/PEO_Chitosan nanofibrous mats containing
Hypericum perforatum
L. as an effective approach for wound treatment. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cláudia Mouro
- FibEnTech Research Unit Faculty of Engineering, University of Beira Interior Covilhã Portugal
| | - Ana P. Gomes
- FibEnTech Research Unit Faculty of Engineering, University of Beira Interior Covilhã Portugal
| | - Isabel C. Gouveia
- FibEnTech Research Unit Faculty of Engineering, University of Beira Interior Covilhã Portugal
| |
Collapse
|