1
|
Shen SC, Spitzer B, Stefaniuk D, Zhou S, Masic A, Buehler MJ. Sewage sludge hydrochar characterization and valorization via hydrothermal processing for 3D printing. COMMUNICATIONS ENGINEERING 2025; 4:52. [PMID: 40097579 PMCID: PMC11914255 DOI: 10.1038/s44172-025-00387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Sewage sludge, a biosolid product of wastewater processing, is an often-overlooked source of rich organic waste. Hydrothermal processing has shown promise in converting sewage sludge into valorized materials with potential application in biofuels, asphalt binders, and bioplastics. Here we characterize the physicochemical properties of hydrochar, the carbonaceous solid phase product of hydrothermal processing, and investigate its use as bio-based filler in additive manufacturing. We find that the presence of metallic and metalloid dopants in sewage sludge, which are not typically found in biomass wastes, yields unusual results in organic material processing such as decreased graphitic ordering after thermal activation. We further find that addition of hydrochar generally decreases mechanical performance of additive manufacturing composites, however, some properties such as toughness can be recovered with nature-inspired architecting into gyroid microstructures. These findings demonstrate that more investigation is required to optimally valorize sewage sludge and similarly disordered waste streams.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Branden Spitzer
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Damian Stefaniuk
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Stefanelli E, Vitolo S, Di Fidio N, Puccini M. Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118887. [PMID: 37678019 DOI: 10.1016/j.jenvman.2023.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
The management of sewage sludge is currently an open issue due to the large volume of waste to be treated and the necessity to avoid incineration or landfill disposal. Hydrothermal carbonization (HTC) has been recognized as a promising thermochemical technique to convert sewage sludge into value-added products. The hydrochar (HC) obtained can be suitable for environmental application as fuel, fertilizer, and sorbent. In this study, activated hydrochars (AHs) were prepared from sewage sludge through HTC followed by chemical activation with potassium hydroxide (KOH) and tested for the removal of pollutants in gaseous and aqueous environments, investigating carbon dioxide (CO2) and ciprofloxacin (CIP) adsorption capacity. The effects of activation temperature (550-750 °C) and KOH/HC impregnation ratio (1-3) on the produced AHs morphology and adsorption capacity were studied by Response Surface Methodology (RSM). The results of RSM analysis evidenced a maximum CO2 uptake of 71.47 mg/g for mild activation conditions (600-650 °C and KOH/HC = 1 ÷ 2), whereas the best CIP uptake of 628.61 mg/g was reached for the most severe conditions (750 °C, KOH/HC = 3). The prepared AHs were also applied for the removal of methylene blue (MB) from aqueous solutions, and the MB uptake results were used for estimating the specific surface area of AHs. High surface areas up to 1902.49 m2/g were obtained for the highest activation temperature and impregnation ratio investigated. Predictive models of CO2 and CIP uptake were developed by RSM analysis, and the optimum activation conditions for maximizing the adsorption performance together with high AH yield were identified: 586 °C and KOH/HC ratio = 1.34 for maximum yield (26.33 %) and CO2 uptake (67.31 mg/g); 715 °C and KOH/HC ratio = 1.78 for maximum yield (18.75 %) and CIP uptake (370.77 mg/g). The obtained results evidenced that chemical activation of previously HTC-treated sewage sludge is a promising way to convert waste into valuable low-cost adsorbents.
Collapse
Affiliation(s)
- Eleonora Stefanelli
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| |
Collapse
|
3
|
Lubura J, Kobera L, Abbrent S, Pavlova E, Strachota B, Bera O, Pavličević J, Ikonić B, Kojić P, Strachota A. Natural Rubber Composites Using Hydrothermally Carbonized Hardwood Waste Biomass as a Partial Reinforcing Filler- Part I: Structure, Morphology, and Rheological Effects during Vulcanization. Polymers (Basel) 2023; 15:1176. [PMID: 36904417 PMCID: PMC10007617 DOI: 10.3390/polym15051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
A new generation biomass-based filler for natural rubber, 'hydrochar' (HC), was obtained by hydrothermal carbonization of hardwood waste (sawdust). It was intended as a potential partial replacement for the traditional carbon black (CB) filler. The HC particles were found (TEM) to be much larger (and less regular) than CB: 0.5-3 µm vs. 30-60 nm, but the specific surface areas were relatively close to each other (HC: 21.4 m2/g vs. CB: 77.8 m2/g), indicating a considerable porosity of HC. The carbon content of HC was 71%, up from 46% in sawdust feed. FTIR and 13C-NMR analyses indicated that HC preserved its organic character, but it strongly differs from both lignin and cellulose. Experimental rubber nanocomposites were prepared, in which the content of the combined fillers was set at 50 phr (31 wt.%), while the HC/CB ratios were varied between 40/10 and 0/50. Morphology investigations proved a fairly even distribution of HC and CB, as well as the disappearance of bubbles after vulcanization. Vulcanization rheology tests demonstrated that the HC filler does not hinder the process, but it significantly influences vulcanization chemistry, canceling scorch time on one hand and slowing down the reaction on the other. Generally, the results suggest that rubber composites in which 10-20 phr of CB are replaced by HC might be promising materials. The use of HC in the rubber industry would represent a high-tonnage application for hardwood waste.
Collapse
Affiliation(s)
- Jelena Lubura
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Libor Kobera
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, CZ-162 00 Praha, Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, CZ-162 00 Praha, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, CZ-162 00 Praha, Czech Republic
| | - Beata Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, CZ-162 00 Praha, Czech Republic
| | - Oskar Bera
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Pavličević
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Ikonić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Predrag Kojić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Adam Strachota
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, CZ-162 00 Praha, Czech Republic
| |
Collapse
|
4
|
Wang Q, Wu S, Cui D, Zhou H, Wu D, Pan S, Xu F, Wang Z. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158034. [PMID: 35970457 DOI: 10.1016/j.scitotenv.2022.158034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
The organic solid waste (OSW) is a potential resource that loses its original value in people's daily production process. It can be used for secondary energy utilization through hydrothermal technology, which is similar to artificially simulating the natural coalification process. Co-hydrothermal carbonization (co-HTC) is a promising thermochemical conversion pathway, and advanced mechanisms can eliminate the drawbacks of single-feedstock hydrothermal carbonization (HTC). The preparation and production process of hydrochar can solve the problems of energy crisis and environmental pollution. This paper comprehensively reviews the key mechanisms of co-HTC to prepare solid fuels, and reviews the development process and practical application of hydrothermal technology. To begin with, the physical and chemical properties and combustion performance of co-hydrochar depend on the production method, process parameters, and selection of raw materials. The co-hydrochar usually has a higher HHV and a low atomic ratio of H/C and O/C, which improves combustion performance. Subsequently, the transformation path of the hydrothermal process of lignocellulosic and protein OSW was comprehensively expounded, and the reaction mechanism of the co-HTC of the two OSWs was effectively proposed. The effect of the ratio of different raw materials on the synergistic effect of co-HTC was also analyzed. Furthermore, the typical advantages and disadvantages of environmental safety, technical economy, and practical application in the co-HTC process are expounded. All in all, this review provides some foundations and new directions for the co-HTC of OSWs to prepare potential fuel. In addition, several prospects for the development and integrated application of co-HTC are presented in the future.
Collapse
Affiliation(s)
- Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China.
| | - Shuang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Da Cui
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Huaiyu Zhou
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Dongyang Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Shuo Pan
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Faxing Xu
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| | - Zhenye Wang
- Jilin Dongfei Solid Waste Research Institute, Jilin 132200, PR China; Jilin Feite Environmental Protection Co., Ltd, Jilin 132200, PR China
| |
Collapse
|
5
|
Characterization of hydrothermal aging induced voids in carbon fiber reinforced epoxy resin composites using micro-computed tomography. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Schneider H, Schmitz T, Flores CG, Tessaro IC, Marcilio NR. Influence of Temperature and Residence Time in the Hydrothermal Carbonization of Rice Husk and Exhausted Black Wattle Bark. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Helena Schneider
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís Schmitz
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gomes Flores
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé, University of Strasbourg, Strasbourg, France
| | - Isabel Cristina Tessaro
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nilson Romeu Marcilio
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
A Sustainable Approach on Spruce Bark Waste Valorization through Hydrothermal Conversion. Processes (Basel) 2022. [DOI: 10.3390/pr10010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the context of sustainable use of resources, hydrothermal conversion of biomass has received increased consideration. As well, the hydrochar (the solid C-rich phase that occurs after the process) has caused great interest. In this work, spruce bark (Picea abies) wastes were considered as feedstock and the influence of hydrothermal process parameters (temperature, reaction time, and biomass to water ratio) on the conversion degree has been studied. Using the response surface methodology and MiniTab software, the process parameters were set up and showed that temperature was the significant factor influencing the conversion, while residence time and the solid-to-liquid ratio had a low influence. Furthermore, the chemical (proximate and ultimate analysis), structural (Fourier-transform infrared spectroscopy, scanning electron microscopy) and thermal properties (thermogravimetric analysis) of feedstock and hydrochar were analyzed. Hydrochar obtained at 280 °C, 1 h processing time, and 1/5 solid-to-liquid ratio presented a hydrophobic character, numerous functional groups, a lower O and H content, and an improved C matter, as well as a good thermal stability. Alongside the structural features, these characteristics endorsed this waste-based product for applications other than those already known as a heat source.
Collapse
|
8
|
Li B, Wang Y, Wang Z, He Y, Song P, Wang R. Preparation and Properties of Hydrogels Based on Lignosulfonate and Its Efficiency of Drug Delivery. ChemistrySelect 2021. [DOI: 10.1002/slct.202101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bozhen Li
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| | - Yusheng Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| | - Zejun Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070, China
| |
Collapse
|
9
|
Abstract
Conservation of wooden artefacts that are exposed outdoors, mainly in open-air museums, is a very complex and difficult issue that aims to preserve both the integrity and aesthetics of valuable objects. Unceasingly subjected to several factors, such as alternating weather conditions and the activities of microorganisms, algae, and insects, they undergo continuous changes and inevitable deterioration. Their biological and physical degradation often results in the formation of gaps and cracks in the wooden tissue, which creates a need not only for wood consolidation, but also for using specialist materials to fill the holes and prevent further degradation of an object. To ensure effective protection for a wooden artefact, a filling material must both protect the wood against further degradation and adapt to changes in wood dimensions in response to humidity variations. A variety of substances, both organic and inorganic, have been used for conservation and gap filling in historic wooden objects over the years. The filling compounds typically consist of two components, of which one is a filler, and the second a binder. In the case of inorganic fillers, plaster has been traditionally used, while the most popular organic fillers were wood powder, wood shavings, and powdered cork. As with binders, mainly natural substances have been used, such as animal glues or waxes. Nowadays, however, due to the lower biodegradability and better physicochemical properties, synthetic materials are gaining popularity. This article discusses the types of filling compounds currently used for gap filling in wooden artefacts exposed outdoors, outlining their advantages and drawbacks, as well as future perspective compounds. It appears that particularly composite materials based on natural polymers deserve attention as promising filling materials due to their high elasticity, as well as similarity and good adhesion to the wooden surface. Their main shortcomings, such as susceptibility to biodegradation, could be eliminated by using some modern, bio-friendly preservatives, providing effective protection for historic wooden artefacts.
Collapse
|