1
|
Papadopoulou FM, Soulis S, Trompeta AFA, Charitidis CA. Thin and Flexible PANI/PMMA/CNF Forest Films Produced via a Two-Step Floating Catalyst Chemical Vapor Deposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5812. [PMID: 39685248 DOI: 10.3390/ma17235812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner. CNFs are grown in a conventional CVD horizontal reactor at 850 °C under atmospheric pressure and characterized by Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Coating the MWCNTs with polymethyl methacrylate (PMMA) while still on the Si substrate retains the structure and results in a flexible, conductive thin film suitable for flexible electrodes. The film is 62 μm thick and stable in aqueous solutions, capable of withstanding further processing, such as electropolymerization with polyaniline, to be used for energy storage applications.
Collapse
Affiliation(s)
- Foteini-Maria Papadopoulou
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece
| | - Spyros Soulis
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece
| | - Aikaterini-Flora A Trompeta
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece
| | - Costas A Charitidis
- Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece
| |
Collapse
|
2
|
Tuma FA, Jari AA, Hasan HA, Badran HA. Synthesis, Surface Morphology, Gas Sensor, DSC Technique and Third-Order Behavior of Conducting Polymer. J Fluoresc 2024; 34:2309-2323. [PMID: 37755630 DOI: 10.1007/s10895-023-03448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
The compound polyaniline (Poly-ANI) with different concentrations of (H2SO4) sulfuric acid has been synthesized by the chemical polymerization method. The prepared compounds have been characterized using number of techniques including FTIR, FE-SEM, EDS and DSC. Additionally, UV-Vis spectroscopy employed for studying the linear optical properties of polymer with different acid concentrations. Third order optical nonlinearity was characterized using Z-scan at 532 nm. The results showed that the nonlinear refractive index has a negative sign. It was observed that the nonlinear refractive index changes in different ratios of H2SO4. The high value of nonlinear refractive index ( n 2 ) obtained along Z-axis is 74.62 × 10 - 7 cm2/W, and the corresponding χ 3 is 21.5 × 10-5 esu. Also, the Poly-ANI film shows the response to NH3 gas sensing in the range 20 ppm-250 ppm and can be used for NH3 sensing application.
Collapse
Affiliation(s)
- Fadhil A Tuma
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Alyaa A Jari
- Ministry of Education, Directorate of Education, Al-Basma Preparatory School for Girls, Basrah, Iraq
| | - Harith A Hasan
- Department of Material Science, Polymer Research Centre, University of Basrah, Basrah, Iraq
| | - Hussain A Badran
- Department of Physics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq.
| |
Collapse
|
3
|
Gallegos-Cerda SD, Hernández-Varela JD, Chanona Pérez JJ, Huerta-Aguilar CA, González Victoriano L, Arredondo-Tamayo B, Reséndiz Hernández O. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO 2 nanoparticles for the degradation of organic dyes. Carbohydr Polym 2024; 324:121476. [PMID: 37985080 DOI: 10.1016/j.carbpol.2023.121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
A hybrid ultra-light and porous cellulose aerogel was prepared by extracting cellulose fibers from white paper, alkali/urea as a crosslinker agent, and functionalized with CNTs and pure anatase TiO2 nanoparticles. Since CNTs work as mechanical reinforcement for aerogels, physical and mechanical properties were measured. Besides, since TiO2 acts as a photocatalyst for degrading dyes (rhodamine B and methylene blue), UV-Vis spectroscopy under UV light, visible light, and darkroom was used to evaluate the degradation process. XRD, FTIR, and TGA were employed to characterize the structural and thermal properties of the composite. The nanostructured solid network of aerogels was visualized in SEM microscopy confirming the structural uniformity of cellulose and TiO2-CNTs onto fibers. Moreover, CLSM was used to study the nano-porous network distribution of cellulose fibers and porosity, and the functionalization process in a detailed way. Finally, the photocatalytic activity of aerogels was evaluated by degradation of dye aqueous solutions, with the best photocatalytic removal (>97 %) occurring after 110 min of UV irradiation. In addition, HPLC-MS facilitated the proposed mechanism for the degradation of dyes. These results confirm that cellulose aerogels coupled with nanomaterials enable the creation of economic support to reduce water pollution with higher decontamination rates.
Collapse
Affiliation(s)
- Susana Dianey Gallegos-Cerda
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Josué David Hernández-Varela
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - José Jorge Chanona Pérez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico.
| | | | - Lizbeth González Victoriano
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - Benjamín Arredondo-Tamayo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico; Universidad Tecnológica de México, Campus Marina-Cuitláhuac, San Salvador Xochimanca, Azcapotzalco, 02870 Mexico City, Mexico
| | - Omar Reséndiz Hernández
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Av. Legaría, Irrigación, 11500 Mexico City, Mexico
| |
Collapse
|
4
|
Zhao H, Hong L, Han K, Yang M, Li Y. In situ prepared composite of polypyrrole and multi-walled carbon nanotubes grafted with sodium polystyrenesulfonate as ammonia gas sensor with wide detection range. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
NH3 gas sensors with good sensing performance including wide detection range at room temperature are highly desirable for a large variety of applications. In this work, multi-walled carbon nanotubes grafted with sodium polystyrenesulfonate (PSSNa-MWCNTs) are prepared via a controlled radical polymerization and show good dispersibility in water. The composite of polypyrrole with PSSNa-MWCNTs (PPy/PSSNa-MWCNT) is prepared by in situ vapor phase polymerization of pyrrole to fabricate NH3 gas sensors. Effects of the content of PSSNa-MWCNTs, the concentration of the oxidant, polymerization time and temperature on the gas sensing properties of the composite are investigated at room temperature. It is revealed that the composite shows much higher response magnitude than the single components. Under optimal conditions, PPy/PSSNa-MWCNT exhibits very wide detection range from 5 to 2000 ppm, and good sensing linearity over 5–20 ppm and 20–100 ppm, respectively. Moreover, the electrical responses of the composite towards NH3 gas are fast (response and recovery time to 1000 ppm NH3 gas are 16.7 s and 143.6 s, respectively), reproducible and highly selective. The interactions between PPy and MWCNTs promote the charge transfer in the composite, leading to good sensing performance and exhibiting a synergetic effect.
Collapse
Affiliation(s)
- Huijie Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Lijie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Kaiyue Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Mujie Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
5
|
Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Water Quality Carbon Nanotube-Based Sensors Technological Barriers and Late Research Trends: A Bibliometric Analysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water is the key element that defines and individualizes our planet. Relative to body weight, water represents 70% or more for the majority of all species on Earth. Taking care of water as a whole is equivalent with taking care of the entire biodiversity or the whole of humanity itself. Water quality is becoming an increasingly important component of terrestrial life, hence intensive work is being conducted to develop sensors for detecting contaminants and assessing water quality and characteristics. Our bibliometric analysis is focused on water quality sensors based on carbon nanotubes and highlights the most important objectives and achievements of researchers in recent years. Due to important measurement characteristics such as sensitivity and selectivity, or low detection limit and linearity, up to the ability to measure water properties, including detection of heavy metal content or the presence of persistent organic compounds, carbon nanotube (CNT) sensors, taking advantage of available nanotechnologies, are becoming increasingly attractive. The conducted bibliometric analysis creates a visual, more efficient keystones mapping. CNT sensors can be integrated into an inexpensive real-time monitoring data acquisition system as an alternative for classical expensive and time-consuming offline water quality monitoring. The conducted bibliometric analysis reveals all connections and maps all the results in this water quality CNT sensors research field and gives a perspective on the approached methods on this specific type of sensor. Finally, challenges related to integration of other trends that have been used and proven to be valuable in the field of other sensor types and capable to contribute to the development (and outlook) for future new configurations that will undoubtedly emerge are presented.
Collapse
|
7
|
El Attar A, Chemchoub S, Diallo Kalan M, Oularbi L, El Rhazi M. Designing New Material Based on Functionalized Multi-Walled Carbon Nanotubes and Cu(OH)2–Cu2O/Polypyrrole Catalyst for Ethanol Oxidation in Alkaline Medium. Front Chem 2022; 9:805654. [PMID: 35186892 PMCID: PMC8854777 DOI: 10.3389/fchem.2021.805654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
In this work, copper(II) hydroxide (Cu(OH)2) and copper oxide (Cu2O) nanostructures are deposited on functionalized multi-walled carbon nanotubes/polypyrrole to report an efficient electrocatalyst for ethanol oxidation in alkaline medium. In the first step, the deposition of functionalized multi-walled nanotubes of carbon (F-MWCNTs) on the electrode surface was carried out using drop casting mode followed by the electrodeposition of polypyrrole (PPy) and copper nanoparticles (Cu-Nps) using galvanostatic mode. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed in order to study the morphology and the structure of the elaborated catalysts. Electrochemical characterization conducted by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed that the introduction of functionalized multi-walled carbon nanotubes enhances the electric properties of the nanocomposites and offers a large active surface area. The prepared electrocatalyst was then tested in a solution of 0.1 M NaOH containing 0.2 M of ethanol showing high performance (7 mA cm−2 at 0.85 V vs Ag/AgCl) and good stability (over 1800 s) toward ethanol oxidation.
Collapse
|
8
|
Chakraborty P, Ahamed ST, Mandal P, Mondal A, Banerjee D. Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiO/PPy/SWCNT composite for removal of organic dyes with an emphasis on the effect of photocatalytic charge carrier transport and photoluminescence properties.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Sk. Taheruddin Ahamed
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Pinaki Mandal
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Anup Mondal
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Dipali Banerjee
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
9
|
Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR. Polyaniline Synthesized by Different Dopants for Fluorene Detection via Photoluminescence Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7382. [PMID: 34885536 PMCID: PMC8658293 DOI: 10.3390/ma14237382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
The effects of different dopants on the synthesis, optical, electrical and thermal features of polyaniline were investigated. Polyaniline (PANI) doped with p-toluene sulfonic acid (PANI-PTSA), camphor sulphonic acid (PANI-CSA), acetic acid (PANI-acetic acid) and hydrochloric acid (PANI-HCl) was synthesized through the oxidative chemical polymerization of aniline under acidic conditions at ambient temperature. Fourier transform infrared light, X-ray diffraction, UV-visible spectroscopy, field emission scanning electron microscopy, photoluminescence spectroscopy and electrical analysis were used to define physical and structural features, bandgap values, electrical conductivity and type and degree of doping, respectively. Tauc calculation reveals the optical band gaps of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl at 3.1, 3.5, 3.6 and 3.9 eV, respectively. With the increase in dopant size, crystallinity is reduced, and interchain separations and d-spacing are strengthened. The estimated conductivity values of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl are 3.84 × 101, 2.92 × 101, 2.50 × 10-2, and 2.44 × 10-2 S·cm-1, respectively. Particularly, PANI-PTSA shows high PL intensity because of its orderly arranged benzenoid and quinoid units. Owing to its excellent synthesis, low bandgap, high photoluminescence intensity and high electrical features, PANI-PTSA is a suitable candidate to improve PANI properties and electron provider for fluorene-detecting sensors with a linear range of 0.001-10 μM and detection limit of 0.26 nM.
Collapse
Affiliation(s)
- Mahnoush Beygisangchin
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia;
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Suraya Abdul Rashid
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Suhaidi Shafie
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia
- Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Amir Reza Sadrolhosseini
- Magneto-Plasmonic Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| |
Collapse
|
10
|
Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review. Polymers (Basel) 2021; 13:2003. [PMID: 34207392 PMCID: PMC8234317 DOI: 10.3390/polym13122003] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique properties, easy synthesis, low cost, and high environmental stability in various applications such as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention. The most important PANI applications are briefly reviewed at the end of this review.
Collapse
Affiliation(s)
- Mahnoush Beygisangchin
- Material Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
| | - Suraya Abdul Rashid
- Material Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suhaidi Shafie
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
- Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amir Reza Sadrolhosseini
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Hong Ngee Lim
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
| |
Collapse
|