1
|
Abu Elella MH, Abdallah HM, Ali EA, Makhado E, Abd El-Ghany NA. Recent developments in conductive polysaccharide adsorbent formulations for environmental remediation: A review. Int J Biol Macromol 2025; 304:140915. [PMID: 39947533 DOI: 10.1016/j.ijbiomac.2025.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Environmental remediation is crucial for human life and ecosystems, involving the cleanup of contaminated water to protect health and restore ecological balance. However, rapid industrialization and population growth have worsened pollution, particularly in water bodies, making effective wastewater treatment a key challenge in ensuring clean drinking water, and the adsorption of toxic gases for air treatment are the main strategies for environmental remediation. Among the various treatment methods, adsorption stands out for its high selectivity, low energy and chemical use, ease of operation, and cost-effectiveness. To date, innovative, highly efficient, non-toxic, engineered adsorbent materials have received potential interest from scientific and governmental communities. Conducting polymer-modified polysaccharide formulations are crucial in wastewater treatment due to their high surface area, adsorption efficiency, excellent stability, and eco-friendly, biodegradable properties. This review offers an extensive overview of recent progress in synthesizing conducting polymer-modified polysaccharide formulations (hydrogels, aerogels, nanofibers, and nanocomposites) for capturing toxic heavy metal ions, organic dyes, pharmaceuticals, phenols as well as adsorbing different toxic gases using various adsorption mechanisms. It also emphasizes the integration of different nanofillers, including carbon-based materials, Mxenes, nanoclay, metal/metal oxides, and hybrid nanomaterials, into conductive polysaccharide chains to improve their physicochemical properties and adsorption efficiency. The reported data showed that these engineered adsorbent materials based on conductive polysaccharide formulations have immense potential for wastewater treatment applications, offering more effective and sustainable solutions.
Collapse
Affiliation(s)
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Eman AboBakr Ali
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, Polokwane 0727, South Africa
| | | |
Collapse
|
2
|
Debnath R, Ikbal AMA, Ravi NK, Kargarzadeh H, Palit P, Thomas S. Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals. Polymers (Basel) 2025; 17:365. [PMID: 39940566 PMCID: PMC11819804 DOI: 10.3390/polym17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon nanodots (CNDs) have garnered significant attention as viable drug delivery vehicles in recent years, especially in the field of phytomedicine. Although there is much promise for therapeutic applications with phytomedicine, its effectiveness is frequently restricted by its low solubility, stability, and bioavailability. This paper offers a thorough synopsis of the developing field of phytomedicine drug delivery based on CND. It explores CND synthesis processes, surface functionalization strategies, and structural and optical characteristics. Additionally, the advantages and difficulties of phytomedicine are examined, with a focus on the contribution of drug delivery methods to the increased effectiveness of phytomedicine. The applications of CNDs in drug delivery are also included in the review, along with the mechanisms that underlie their improved drug delivery capabilities. Additionally, it looks at controlled-release methods, stability augmentation, and phytomedicine-loading tactics onto CNDs. The potential of polymeric carbon nanodots in drug delivery is also covered, along with difficulties and prospective directions going forward, such as resolving toxicity and biocompatibility issues. In summary, the present review highlights the encouraging contribution of CNDs to the field of drug delivery, specifically in enhancing the potential of phytomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Rabin Debnath
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Neeraj Kr. Ravi
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International, Inter University Centre for Nanoscience and Nantechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686560, India
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg P.O. Box 17011, South Africa
- TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd., Sreekariyam, Trivandrum 695016, India
| |
Collapse
|
3
|
Li JW, Cheng CC, Chiu CW. Advances in Multifunctional Polymer-Based Nanocomposites. Polymers (Basel) 2024; 16:3440. [PMID: 39684185 DOI: 10.3390/polym16233440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
"Advances in Multifunctional Polymer-Based Nanocomposites" presents the results of pioneering research in a new direction in the field of materials science and engineering technology [...].
Collapse
Affiliation(s)
- Jia-Wun Li
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
4
|
Althumayri M, Das R, Banavath R, Beker L, Achim AM, Ceylan Koydemir H. Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405099. [PMID: 39120484 PMCID: PMC11481197 DOI: 10.1002/advs.202405099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This review examines the recent advancements in transparent electrodes and their crucial role in multimodal sensing technologies. Transparent electrodes, notable for their optical transparency and electrical conductivity, are revolutionizing sensors by enabling the simultaneous detection of diverse physical, chemical, and biological signals. Materials like graphene, carbon nanotubes, and conductive polymers, which offer a balance between optical transparency, electrical conductivity, and mechanical flexibility, are at the forefront of this development. These electrodes are integral in various applications, from healthcare to solar cell technologies, enhancing sensor performance in complex environments. The paper addresses challenges in applying these electrodes, such as the need for mechanical flexibility, high optoelectronic performance, and biocompatibility. It explores new materials and innovative techniques to overcome these hurdles, aiming to broaden the capabilities of multimodal sensing devices. The review provides a comparative analysis of different transparent electrode materials, discussing their applications and the ongoing development of novel electrode systems for multimodal sensing. This exploration offers insights into future advancements in transparent electrodes, highlighting their transformative potential in bioelectronics and multimodal sensing technologies.
Collapse
Affiliation(s)
- Majed Althumayri
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Ritu Das
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Ramu Banavath
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Levent Beker
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Alin M. Achim
- School of Computer ScienceUniversity of BristolBristolBS8 1QUUK
| | - Hatice Ceylan Koydemir
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| |
Collapse
|
5
|
Kanagavalli P, Eissa S. Exploring various carbon nanomaterials-based electrodes modified with polymelamine for the reagentless electrochemical immunosensing of Claudin18.2. Biosens Bioelectron 2024; 259:116388. [PMID: 38761744 DOI: 10.1016/j.bios.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis. Despite its significance, no biosensor has been reported to date for the detection of CLDN18.2. Here, we present the inaugural immunosensor for CLDN18.2. In this study, an amine-rich conducting polymer of polymelamine (PM) was electrografted onto different carbon nanomaterial-based screen-printed electrodes (SPEs), including carbon (C), graphene (Gr), graphene oxide (GO), carbon nanotube (CNT), and carbon nanofiber (CNF) via cyclic voltammetry. A comparative study was performed to explore the best material for the preparation of the PM-modified electrodes to be used as in-situ redox substrate for the immunosensor fabrication. The surface chemistry and structural features of pristine and PM-deposited electrodes were analyzed using Raman and scanning electron microscopy (SEM) techniques. Our results showed that the PM deposited on Gr and CNT/SPEs exhibited the most significant and stable redox behavior in PBS buffer. The terminal amine moieties on the PM-modified electrode surfaces were utilized for immobilizing anti-CLDN18.2 monoclonal antibodies via N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide chemistry to construct the electrochemical immunosensor platform. Differential pulse voltammetry-based immunosensing of CLDN18.2 protein on BSA/anti-CLDN18.2/PM-Gr/SPE and BSA/anti-CLDN18.2/PM-CNT/SPE exhibited excellent selectivity against other proteins such as CD1, PDCD1, and ErBb2. The limits of detection of these two immunosensor platforms were calculated to be 7.9 pg/mL and 0.104 ng/mL for the CNT and Gr immunosensors, respectively. This study demonstrated that the PM-modified Gr and CNT electrodes offer promising platforms not only for the reagentless signaling but also for covalent immobilization of biomolecules. Moreover, these platforms offer excellent sensitivity and selectivity for the detection of CLDN18.2 due to its enhanced stable redox activity. The immunosensor demonstrated promising results for the sensitive detection of CLDN18.2 in biological samples, addressing the critical need for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Pandiyaraj Kanagavalli
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
6
|
Zhang Z, Hu L, Wang R, Zhang S, Fu L, Li M, Xiao Q. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers (Basel) 2024; 16:545. [PMID: 38399924 PMCID: PMC10891544 DOI: 10.3390/polym16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Conductive polymer composites (CPCs) filled with carbon-based materials are widely used in the fields of antistatic, electromagnetic interference shielding, and wearable electronic devices. The conductivity of CPCs with a carbon-based filling is reflected by their electrical percolation behavior and is the focus of research in this field. Compared to experimental methods, Monte Carlo simulations can predict the conductivity and analyze the factors affecting the conductivity from a microscopic perspective, which greatly reduces the number of experiments and provides a basis for structural design of conductive polymers. This review focuses on Monte Carlo models of CPCs with a carbon-based filling. First, the theoretical basis of the model's construction is introduced, and a Monte Carlo simulation of the electrical percolation behaviors of spherical-, rod-, disk-, and hybridfilled polymers and the analysis of the factors influencing the electrical percolation behavior from a microscopic point of view are summarized. In addition, the paper summarizes the progress of polymer piezoresistive models and polymer foaming structure models that are more relevant to practical applications; finally, we discuss the shortcomings and future research trends of existing Monte Carlo models of CPCs with carbon-based fillings.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Liang Hu
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, China;
| | - Rui Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Shujie Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Lisong Fu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Z.Z.); (L.F.)
| | - Mengxuan Li
- College of Fine Arts & Design, Tianjin Normal University, Tianjin 300387, China;
| | - Qi Xiao
- School of Textile Garment and Design, Changshu Institute of Technology, Changshu 215500, China;
| |
Collapse
|
7
|
El Sayed GA, Abukhadra MR, Mostafa SM, Rabia M, Korany MA, Khalil MM. A novel potentiometric sensor based on ZnO decorated polyaniline/coal nanocomposite for diltiazem determination. RSC Adv 2023; 13:34715-34723. [PMID: 38035231 PMCID: PMC10683044 DOI: 10.1039/d3ra06849h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Diltiazem (DTZ) is one of the most effective medications for treating cardiovascular diseases. It has been widely used for the treatment of angina pectoris, hypertension and some types of arrhythmia. The development and application of a modified carbon paste sensor with improved detection limits for the potentiometric determination of diltiazem are the main goals of the current study. Sensitivity, long-term stability, reproducibility and improving the electrochemical performance are among the characteristics that have undergone careful examination. A modified carbon paste sensor based on β-cyclodextrin (β-CD) as ionophore, a lipophilic anionic additive (NaTPB) and a ZnO-decorated polyaniline/coal nanocomposite (ZnO@PANI/C) dissolved in dibutyl phthalate plasticizer, exhibited the best performance and Nernstian slope. The ZnO@PANI/C based sensor succeeded in lowering the detection limit to 5.0 × 10-7 through the linear range 1.0 × 10-6 to 1.0 × 10-2 mol L-1 with fast response time ≤ 10.0 s. The prepared nanomaterial was characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The surface properties of the proposed sensor were characterized by electrochemical impedance spectroscopy (EIS). The selectivity behavior of the investigated sensor was tested against a drug with similar chemical structure and biologically important blood electrolytes (Na+, K+, Mg2+, and Ca2+). The proposed analytical method was applied for DTZ analysis in pure drug, pharmaceutical products and industrial water samples with excellent recovery data.
Collapse
Affiliation(s)
- G A El Sayed
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - S M Mostafa
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - M Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed Ali Korany
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - M M Khalil
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
8
|
Kim J, Shanmugasundaram A, Lee CB, Kim JR, Park JJ, Kim ES, Lee BK, Lee DW. Enhanced cardiomyocyte structural and functional anisotropy through synergetic combination of topographical, conductive, and mechanical stimulation. LAB ON A CHIP 2023; 23:4540-4551. [PMID: 37771289 DOI: 10.1039/d3lc00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Drug-induced cardiotoxicity, a significant concern in the pharmaceutical industry, often results in the withdrawal of drugs from the market. The main cause of drug-induced cardiotoxicity is the use of immature cardiomyocytes during in vitro drug screening procedures. Over time, several methods such as topographical, conductive, and mechanical stimulation have been proposed to enhance both maturation and contractile properties of these cardiomyocytes. However, the synergistic effects of integrating topographical, conductive, and mechanical stimulation for cardiomyocyte maturation remain underexplored and poorly understood. To address this limitation, herein, we propose a grooved polydimethylsiloxane (PDMS) membrane embedded with silver nanowires (AgNWs-E-PDMS). The proposed AgNWs-E-PDMS membrane enhances the maturation of cardiomyocytes and provides a more accurate evaluation of drug-induced cardiotoxicity. When subjected to 10% tensile stress on the AgNWs-E-PDMS membrane, cardiomyocytes displayed substantial enhancements. Specifically, the contraction force, sarcomere length, and connexin-43 (Cx43) expression are increased by 2.0-, 1.5-, and 2.4-times, respectively, compared to the control state. The practical feasibility of the proposed device as a drug screening platform is demonstrated by assessing the adverse effects of lidocaine on cardiomyocytes. The contraction force and beat rate of lidocaine treated cardiomyocytes cultured on the AgNWs-E-PDMS membrane under mechanical stimulation decreased to 0.9 and 0.64 times their initial values respectively, compared to 0.6 and 0.51 times in the control state. These less pronounced changes in the contraction force and beat rate signify the superior drug response in the cardiomyocytes, a result of their enhanced maturation and growth on the AgNWs-E-PDMS membrane combined with mechanical stimulation.
Collapse
Affiliation(s)
- Jongyun Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheong Bin Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jae Rim Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jeong Jae Park
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Oh MJ, Son GC, Kim M, Jeon J, Kim YH, Son M. An Aqueous Process for Preparing Flexible Transparent Electrodes Using Non-Oxidized Graphene/Single-Walled Carbon Nanotube Hybrid Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2249. [PMID: 37570566 PMCID: PMC10421273 DOI: 10.3390/nano13152249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using aqueous solutions of graphene, single-walled carbon nanotubes, and sodium dodecyl sulfate surfactant. The hybrid films showed excellent electrode properties, such as an optical transmittance of ≥90%, a sheet resistance of ~3.5 kΩ/sq., a flexibility of up to ε = 3.6% ((R) = 1.4 mm), and a high mechanical stability, even after 103 bending cycles at ε = 2.0% ((R) = 2.5 mm). Using the hybrid electrodes, thin-film transistors (TFTs) were fabricated, which exhibited an electron mobility of ~6.7 cm2 V-1 s-1, a current on-off ratio of ~1.04 × 107, and a subthreshold voltage of ~0.122 V/decade. These electrical properties are comparable with those of TFTs fabricated using Al electrodes. This suggests the possibility of customizing flexible transparent electrodes within a carbon nanomaterial system.
Collapse
Affiliation(s)
- Min Jae Oh
- Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea (J.J.)
| | - Gi-Cheol Son
- School of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| | - Minkook Kim
- Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea (J.J.)
| | - Junyoung Jeon
- Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea (J.J.)
| | - Yong Hyun Kim
- Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea (J.J.)
| | - Myungwoo Son
- Artificial Intelligence & Energy Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea (J.J.)
| |
Collapse
|
10
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M. A Conductive Hydrogel Microneedle-Based Assay Integrating PEDOT:PSS and Ag-Pt Nanoparticles for Real-Time, Enzyme-Less, and Electrochemical Sensing of Glucose. Adv Healthc Mater 2023; 12:e2202362. [PMID: 36183355 DOI: 10.1002/adhm.202202362] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/1912] [Indexed: 02/03/2023]
Abstract
Continuous glucose meters (CGMs) have tremendously boosted diabetes care by emancipating millions of diabetic patients' need for repeated self-testing by pricking their fingers every few hours. However, CGMs still suffer from major deficiencies regarding accuracy, precision, and stability. This is mainly due to their dependency on an enzymatic detection mechanism. Here a low-cost hydrogel microneedle (HMN)-CGM assay fabricated using swellable dopamine (DA)-hyaluronic acid (HA) hydrogel for glucose interrogation in dermal interstitial fluid (ISF) is introduced. Platinum and silver nanoparticles are synthesized within the 3D porous hydrogel scaffolds for nonenzymatic electrochemical sensing of the glucose. Incorporation of a highly water dispersible conductive polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) enhances the electrical properties of HMN array, making the patch suitable as the working electrode of the sensor. The in vitro and ex vivo characterization of this newly developed HMN patch is fully studied. The performance of the HMN-CGM for real-time measurement of glucose is also shown using a rat model of type 1 diabetes. The device introduces the first HMN-based assay for tracking important disease biomarkers and expect to pave the way for next generation of polymeric-based sensors.
Collapse
Affiliation(s)
- Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amin GhavamiNejad
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Karan Dhingra
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Melisa Samarikhalaj
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
12
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Pilo MI, Baluta S, Loria AC, Sanna G, Spano N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2840. [PMID: 36014704 PMCID: PMC9413253 DOI: 10.3390/nano12162840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.
Collapse
Affiliation(s)
- Maria I. Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna C. Loria
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
15
|
Kakhramanov NT, Allahverdiyeva KV, Mustafayeva FA. Structure and Properties of Conducting Composites Based on Polyolefins and Carbon Black. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
16
|
Kamboj N, Dey RS. Exploring the chemistry of “Organic/Water-in-salt” electrolyte in Graphene-polypyrrole based high-voltage (2.4 V) microsupercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Knuth RD, Knuth FA, Maron GK, Balboni RDC, Moreira ML, Raubach CW, Jardim PLG, Carreno NLV, Avellaneda CO, Moreira EC, Cava SS. Development of xanthan gum‐based solid polymer electrolytes with addition of expanded graphite nanosheets. J Appl Polym Sci 2022. [DOI: 10.1002/app.52400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rogerio Daltro Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Flávio A. Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Guilherme K. Maron
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Postgraduate Program in Biotechnology, Technology Development Center Federal University of Pelotas Capão do Leão Rio Grande do Sul Brazil
| | - Raphael D. C. Balboni
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Mario L. Moreira
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Cristiane W. Raubach
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Pedro L. G. Jardim
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Neftali L. V. Carreno
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - César O. Avellaneda
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Eduardo C. Moreira
- Department of Physics Federal University of Pampa Bagé Rio Grande do Sul Brazil
| | - Sérgio S. Cava
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
18
|
Guo F, Guo J, Zheng Z, Xia T, Chishti AN, Lin L, Zhang W, Diao G. Polymerization of pyrrole induced by pillar[5]arene functionalized graphene for supercapacitor electrode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Biocompatible Osmium Telluride-Polypyrrole Nanocomposite Material: Application in Prostate Specific Antigen Immunosensing. Processes (Basel) 2021. [DOI: 10.3390/pr9122203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is a dominant global threat to society. It affects nearly 4000 men in South Africa annually, making it the second most threatening cancerous disease after lung cancer. A potential serological biomarker to monitor early diagnosis of prostate cancer is prostate specific antigen (PSA). We used the PSA biomarker in our work to develop an extremely sensitive electrochemical immunosensor to achieve low detection limits. The fabrication steps followed with the combination of thioglycolic acid capped osmium telluride quantum dots (TGA-OsTe2QD)-polypyrrole (PPy) nanocomposite and prostate specific antigen modified on a glassy carbon electrode. The UV-Vis signatures of TGA-OsTe2QD-PPy showed an absorption band at 262 nm which is attributed to the PPy and TGA-OsTe2QD composite. This band corresponds to the energy band gap of 4.4 and 5.4 eV. The CV responses of BSA|Ab|TGA-OsTe2QD|PPy|GCE modified electrode to prostate specific antigen (PSA) was studied within a range of 0–16 ng/mL PSA that was linear, herein referred to as liner range (LR), which produced a limit of detection (LOD) value of 0.36 ng/mL PSA. The values of the immunosensor’s calibration parameters (LR and LOD) make them suitable for real sample application, due to their coverage of the PSA concentration range (0–14 ng/mL) that is of clinical importance.
Collapse
|
20
|
Sumdani MG, Islam MR, Yahaya ANA, Safie SI. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Gulam Sumdani
- Malaysian Institute of Chemical and Bio‐engineering Technology, Universiti Kuala Lumpur Kuala Lumpur Malaysia
| | - Muhammad Remanul Islam
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| | - Ahmad Naim A. Yahaya
- Institute of Postgraduate Studies, Universiti Kuala Lumpur Kuala Lumpur Wilayah Persekutuan Malaysia
| | - Sairul Izwan Safie
- Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur Johor Bahru Malaysia
| |
Collapse
|
21
|
Abstract
In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.
Collapse
|
22
|
Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review. Polymers (Basel) 2021; 13:2003. [PMID: 34207392 PMCID: PMC8234317 DOI: 10.3390/polym13122003] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique properties, easy synthesis, low cost, and high environmental stability in various applications such as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention. The most important PANI applications are briefly reviewed at the end of this review.
Collapse
Affiliation(s)
- Mahnoush Beygisangchin
- Material Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
| | - Suraya Abdul Rashid
- Material Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suhaidi Shafie
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
- Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amir Reza Sadrolhosseini
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Hong Ngee Lim
- Functional Device Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.S.); (H.N.L.)
| |
Collapse
|
23
|
Vallan L, Istif E, Gómez IJ, Alegret N, Mantione D. Thiophene-Based Trimers and Their Bioapplications: An Overview. Polymers (Basel) 2021; 13:1977. [PMID: 34208624 PMCID: PMC8234281 DOI: 10.3390/polym13121977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/15/2023] Open
Abstract
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.
Collapse
Affiliation(s)
- Lorenzo Vallan
- Laboratoire de Chimie des Polymères Organiques (LCPO—UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France;
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|