1
|
Yu YM, Long YZ, Zhu ZQ. Chitosan, a Natural Polymer, is an Excellent Sustained-Release Carrier for Amide Local Anesthetics. J Pain Res 2024; 17:3539-3551. [PMID: 39493932 PMCID: PMC11531737 DOI: 10.2147/jpr.s480926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Local anesthetics, particularly amide types, play a crucial role in perioperative anesthesia to alleviate pain and manage chronic, long-term pain, with their brief effect period remaining a universal challenge that needs resolution. There is a high anticipation for creating materials that maintain prolonged effectiveness of local anesthetics through a straightforward administration technique. Chitosan is the most typical natural amino polymer, which is highly reactive and easy to modify. It has been widely and deeply used in the field of medicine. At present, it is mainly used in tissue regeneration and repair, hemostasis and wound healing, antibacterial and anti-infection, disease diagnosis and treatment detection, and drug delivery. In the field of anesthesia, chitosan is regarded as a potential perfect carrier for the sustained release of amide local anesthetics. This document aims to analyze the current application of chitosan as a prolonged-release substance in amide-type local anesthetics, encapsulate the associated research advancements, and subsequently investigate the practicality and prospects of its medical uses.
Collapse
Affiliation(s)
- Yun-Mei Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yuan-Zhu Long
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
2
|
Russo T, Scialla S, D’Albore M, Cruz-Maya I, De Santis R, Guarino V. An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits. Polymers (Basel) 2024; 16:2893. [PMID: 39458721 PMCID: PMC11511187 DOI: 10.3390/polym16202893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past two decades, the development of nerve guide conduits (NGCs) has gained much attention due to the impellent need to find innovative strategies to take care of damaged or degenerated peripheral nerves in clinical surgery. In this view, significant effort has been spent on the development of high-performance NGCs by different materials and manufacturing approaches. Herein, a highly versatile and easy-to-handle route to process 3D porous tubes made of chitosan and gelatin to be used as a nerve guide conduit were investigated. This allowed us to fabricate highly porous substrates with a porosity that ranged from 94.07 ± 1.04% to 97.23 ± 1.15% and average pore sizes-estimated via X-ray computed tomography (XCT) reconstruction and image analysis-of hundreds of microns and an irregular shape with an aspect ratio that ranged from 0.70 ± 0.19 to 0.80 ± 0.15 as a function of the chitosan/gelatin ratio. More interestingly, the addition of gelatin allowed us to modulate the mechanical properties, which gradually reduced the stiffness-max strength from 0.634 ± 0.015 MPa to 0.367 ± 0.021 MPa-and scaffold toughness-from 46.2 kJ/m3 to 14.0 kJ/m3-as the gelatin content increased. All these data fall into the typical ranges of the morphological and mechanical parameters of currently commercialized NGC products. Preliminary in vitro studies proved the ability of 3D porous tubes to support neuroblastoma cell (SH-SY5Y) adhesion and proliferation. In perspective, the proposed approach could also be easily implemented with the integration of other processing techniques (e.g., electrospinning) for the design of innovative bi-layered systems with an improved cell interface and molecular transport abilities.
Collapse
Affiliation(s)
| | | | | | | | - Roberto De Santis
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (T.R.); (S.S.); (M.D.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy; (T.R.); (S.S.); (M.D.); (I.C.-M.)
| |
Collapse
|
3
|
Petrova VA, Poshina DN, Golovkin AS, Mishanin AI, Zhuravskii SG, Yukina GY, Naumenko MY, Sukhorukova EG, Savin NA, Erofeev AS, Gofman IV, Ivan'kova EM, Dubashynskaya NV, Yakimansky AV, Skorik YA. Electrospun Composites of Chitosan with Cerium Oxide Nanoparticles for Wound Healing Applications: Characterization and Biocompatibility Evaluation In Vitro and In Vivo. Polymers (Basel) 2024; 16:1787. [PMID: 39000644 PMCID: PMC11243935 DOI: 10.3390/polym16131787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Cerium oxide nanoparticles (CeONPs), as part of tissue regeneration matrices, can protect cells from reactive oxygen species and oxidative stress. In addition, they can influence the properties of the scaffold, including its electrospinnability and mechanical strength. In this work, we prepared electrospun fiber mats from a chitosan and polyethylene oxide blend (CS-PEO) with the addition of ceria nanoparticles (CS-PEO-CeONP). The addition of CeONPs resulted in a smaller fiber diameter and higher swelling compared to CS-PEO fiber mats. CeONP-modified fiber mats also had a higher Young's modulus due to the reinforcing effect of the nanoparticles. Both mats had comparable adhesion and cytocompatibility to mesenchymal stem cells, which had a more rounded morphology on CS-PEO-CeONP compared to elongated cells on the CS-PEO mats. Biocompatibility in an in vivo rat model showed no acute toxicity, no septic or allergic inflammation, and no rough scar tissue formation. The degradation of both mats passed the stage of matrix swelling. CS-PEO-CeONP showed significantly slower biodegradation, with most of the matrix remaining in the tissue after 90 days. The reactive inflammation was aseptic in nature with the involvement of multinucleated foreign-body type giant cells and was significantly reduced by day 90. CeONPs induced the formation of the implant's connective tissue capsule. Thus, the introduction of CeONPs influenced the physicochemical properties and biological activity of CS-PEO nanofiber mats.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Alexey S Golovkin
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | - Alexander I Mishanin
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | - Sergei G Zhuravskii
- Hearing and Speech Laboratory, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Galina Y Yukina
- Laboratory of Pathomorphology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Maria Y Naumenko
- Hearing and Speech Laboratory, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Elena G Sukhorukova
- Laboratory of Pathomorphology, Pavlov First Saint Petersburg State Medical University, L'va Tolstogo 6-8, 197022 St. Petersburg, Russia
| | - Nikita A Savin
- Laboratory of Biophysics, National University of Science and Technology "MISIS", Leninsky 4, 119049 Moscow, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology "MISIS", Leninsky 4, 119049 Moscow, Russia
| | - Iosif V Gofman
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Elena M Ivan'kova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Alexander V Yakimansky
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
4
|
Korniienko V, Husak Y, Diedkova K, Varava Y, Grebnevs V, Pogorielova O, Bērtiņš M, Korniienko V, Zandersone B, Ramanaviciene A, Ramanavicius A, Pogorielov M. Antibacterial Potential and Biocompatibility of Chitosan/Polycaprolactone Nanofibrous Membranes Incorporated with Silver Nanoparticles. Polymers (Basel) 2024; 16:1729. [PMID: 38932079 PMCID: PMC11207988 DOI: 10.3390/polym16121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.
Collapse
Affiliation(s)
- Viktoriia Korniienko
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (K.D.); (B.Z.); (M.P.)
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| | - Yevgeniia Husak
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (K.D.); (B.Z.); (M.P.)
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| | - Yuliia Varava
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| | - Vladlens Grebnevs
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia;
| | - Oksana Pogorielova
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| | - Māris Bērtiņš
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia;
| | - Valeriia Korniienko
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| | - Baiba Zandersone
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (K.D.); (B.Z.); (M.P.)
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, LV-1004 Riga, Latvia; (K.D.); (B.Z.); (M.P.)
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine; (Y.H.); (Y.V.); (O.P.); (V.K.)
| |
Collapse
|
5
|
Demir D, Bolgen N, Vaseashta A. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers (Basel) 2023; 15:4253. [PMID: 37959933 PMCID: PMC10648854 DOI: 10.3390/polym15214253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The process of electrospinning is over a century old, yet novel material and method achievements, and later the addition of nanomaterials in polymeric solutions, have spurred a significant increase in research innovations with several unique applications. Significant improvements have been achieved in the development of electrospun nanofibrous matrices, which include tailoring compositions of polymers with active agents, surface functionalization with nanoparticles, and encapsulation of functional materials within the nanofibers. Recently, sequentially combining fabrication of nanofibers with 3D printing was reported by our group and the synergistic process offers fiber membrane functionalities having the mechanical strength offered by 3D printed scaffolds. Recent developments in electrospun nanofibers are enumerated here with special emphasis on biomedical technologies, chemical and biological sensing, and energy harvesting aspects in the context of e-textile and tactile sensing. Energy harvesting offers significant advantages in many applications, such as biomedical technologies and critical infrastructure protection by using the concept of finite state machines and edge computing. Many other uses of devices using electrospun nanofibers, either as standalone or conjoined with 3D printed materials, are envisaged. The focus of this review is to highlight selected novel applications in biomedical technologies, chem.-bio sensing, and broadly in energy harvesting for use in internet of things (IoT) devices. The article concludes with a brief projection of the future direction of electrospun nanofibers, limitations, and how synergetic combination of the two processes will open pathways for future discoveries.
Collapse
Affiliation(s)
- Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Türkiye;
| | - Nimet Bolgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Türkiye;
| | - Ashok Vaseashta
- Applied Research, International Clean Water Institute, Manassas, VA 20110, USA
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, LV 1048 Riga, Latvia
| |
Collapse
|
6
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
8
|
Bacterial Cellulose Composites with Polysaccharides Filled with Nanosized Cerium Oxide: Characterization and Cytocompatibility Assessment. Polymers (Basel) 2022; 14:polym14225001. [PMID: 36433128 PMCID: PMC9696978 DOI: 10.3390/polym14225001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution. The presence of CeONPs in the polysaccharide composite matrix and the interaction of the nanoparticles with the polymer, confirmed by IR spectroscopy, change the network architecture of the composite. This leads to noticeable changes in a number of properties of the material in comparison with those of the matrix's polysaccharide composition, viz., an increase in mechanical stiffness, a decrease in the degree of planar orientation of BC macrochains, an increase in hydrophilicity, and the shift of the processes of thermo-oxidative destruction of the material to a low-temperature region. The latter effect is considered to be caused by the redox activity of cerium oxide (reversible transitions between the states Ce4+ and Ce3+) in thermally stimulated processes in the nanocomposite films. In the equilibrium swollen state, the material retains a mechanical strength at the level of ~2 MPa. The results of in vitro tests (cultivation of multipotent mesenchymal stem cells) have demonstrated the good biocompatibility of the BC-ALG(CeONP)-CS film as cell proliferation scaffolds.
Collapse
|
9
|
Anisiei A, Rosca I, Sandu AI, Bele A, Cheng X, Marin L. Imination of Microporous Chitosan Fibers-A Route to Biomaterials with "On Demand" Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14010117. [PMID: 35057012 PMCID: PMC8777909 DOI: 10.3390/pharmaceutics14010117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microporous chitosan nanofibers functionalized with different amounts of an antimicrobial agent via imine linkage were prepared by a three-step procedure including the electrospinning of a chitosan/PEO blend, PEO removal and acid condensation reaction in a heterogeneous system with 2-formylphenylboronic acid. The fibers’ characterization was undertaken keeping in mind their application to wound healing. Thus, by FTIR and 1H-NMR spectroscopy, it was confirmed the successful imination of the fibers and the conversion degree of the amine groups of chitosan into imine units. The fiber morphology in terms of fiber diameter, crystallinity, inter- and intra-fiber porosity and strength of intermolecular forces was investigated using scanning electron microscopy, polarized light microscopy, water vapor sorption and thermogravimetric analysis. The swelling ability was estimated in water and phosphate buffer by calculating the mass equilibrium swelling. The fiber biodegradation was explored in five media of different pH, corresponding to different stages of wound healing and the antimicrobial activity against the opportunistic pathogens inflicting wound infection was investigated according to standard tests. The biocompatibility and bioadhesivity were studied on normal human dermal fibroblast cells by direct contact procedure. The dynamic character of the imine linkage of the functionalized fibers was monitored by UV-vis spectroscopy. The results showed that the functionalization of the chitosan microporous nanofibers with antimicrobial agents via imine linkage is a great route towards bio-absorbable wound dressings with “on demand” antimicrobial properties and biodegradation rate matching the healing stages.
Collapse
Affiliation(s)
- Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Andreea-Isabela Sandu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Adrian Bele
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
- Correspondence:
| |
Collapse
|
10
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
11
|
Deineka V, Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, Yusupova A, Tkachenko Y, Kalinkevich O, Zlatska A, Pogorielov M. Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials. Biomedicines 2021; 9:biomedicines9060588. [PMID: 34064090 PMCID: PMC8224387 DOI: 10.3390/biomedicines9060588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique. Chitosan electrospinning membranes (ChEsM) were made from Ch and polyethylene oxide (PEO) powders for rich high-porous material with sufficient hemostatic parameters. The structure, porosity, density, antibacterial properties, in vitro degradation and biocompatibility of ChEsM were evaluated and compared to the conventional Ch sponge (ChSp). In addition, the hemostatic and bioactive performance of both materials were examined in vivo, using the liver-bleeding model in rats. A penetrating punch biopsy of the left liver lobe was performed to simulate bleeding from a non-compressible irregular wound. Appropriately shaped ChSp or ChEsM were applied to tissue lesions. Electrospinning allows us to produce high-porous membranes with relevant ChSp degradation and swelling properties. Both materials demonstrated high biocompatibility and hemostatic effectiveness in vitro. However, the antibacterial properties of ChEsM were not as good when compared to the ChSp. In vivo studies confirmed superior ChEsM biocompatibility and sufficient hemostatic performance, with tight interplay with host cells and tissues. The in vivo model showed a higher biodegradation rate of ChEsM and advanced liver repair.
Collapse
Affiliation(s)
- Volodymyr Deineka
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- Correspondence: (V.D.); (M.P.)
| | - Oksana Sulaieva
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- Medical Laboratory CSD, 03148 Kyiv, Ukraine
| | - Mykola Pernakov
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Anna Yanovska
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Aziza Yusupova
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | - Yuliia Tkachenko
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
| | | | - Alena Zlatska
- Biotechnology Laboratory Ilaya Regeneration, Medical Company Ilaya, 03115 Kyiv, Ukraine;
- State Institute of Genetic and Regenerative Medicine of NAMS of Ukraine, 04114 Kyiv, Ukraine
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 40007 Sumy, Ukraine; (O.S.); (M.P.); (V.K.); (Y.H.); (A.Y.); (A.Y.); (Y.T.)
- NanoPrime, 39-200 Dębica, Poland
- Correspondence: (V.D.); (M.P.)
| |
Collapse
|