1
|
Mapile AN, Scatena LF. Bulking up: the impact of polymer sterics on emulsion stability. SOFT MATTER 2024; 20:7471-7483. [PMID: 39258873 DOI: 10.1039/d4sm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Encapsulation of hydrophobic active ingredients is critical for targeted drug delivery as water-insoluble drugs dominate the pharmaceutical marketplace. We previously demonstrated hexadecane-in-water emulsions stabilized with a pH-tunable polymer, poly(acrylic acid) (PAA), via a steric layer preventing particle aggregation. Using vibrational sum frequency scattering spectroscopy (VSFSS), here we probe the influence of steric hindrance on emulsion colloidal stability by tailoring the molecular weight of PAA and by adding an additional methyl group to the polymer backbone via poly(methacrylic acid) (PMAA) at pH 2, 4, and 6. At low polymer molecular weight (2 and 10 kDa), PAA adsorption is entropy driven and akin to surfactant-mediated stabilization. With 450 kDa PAA, the longer polymer chain emphasizes enthalpically favored polymer-oil interactions to initially coat the surface, and forms layers at increasing molecular weight (1000 and 4000 kDa). PMAA exhibits better oil-solubility than PAA at low concentrations but cannot accommodate the steric hindrance at higher concentrations leading to disorder. Finally, we connect our molecular-level understanding of PAA ordering with temperature-dependent dynamic light scattering experiments and observe that emulsions coated with PAA at pH 2 and 4 maintain colloidal stability from 0-90 °C, making PAA a promising polymer for hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ashley N Mapile
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| | - Lawrence F Scatena
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
3
|
The Effect of Shear on the Properties of an Associated Polymer Solution for Oil Displacement. Polymers (Basel) 2023; 15:polym15030616. [PMID: 36771917 PMCID: PMC9919724 DOI: 10.3390/polym15030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Polymer flooding is one of the techniques used to enhance oil recovery from depleted hydrocarbon reservoirs. Although this technology is popular for this application, the shearing effect in the injection process causes poor performance, which is an obstacle to meeting the needs of the formation. An experimental evaluation of the rheological properties, viscoelasticity, hydrodynamic size, static adsorption, and seepage characteristics of the associated polymer solution before and after shearing was conducted to determine the influence of shearing on the polymer solution. The results show that the effect of shear on the polymer was irreversible, and the properties of the polymer solution damaged by shear were attenuated. After the critical associating concentration, the associated polymer can recover its solution properties through hydrophobic association, which can improve the shear resistance of the polymer solution and make its own rheological law and reduce the viscoelastic change. Although the hydrodynamic size, viscoelasticity, and adsorption capacity of the polymer solution after shear failure decreased, strong flow resistance during porous media seepage and mobility control was achieved. Improving the shear resistance of the polymer solution by increasing the intermolecular force is proposed to develop new polymer systems for subsequent oil displacement.
Collapse
|
4
|
Gęca M, Wiśniewska M, Urban T, Nowicki P. Temperature Effect on Ionic Polymers Removal from Aqueous Solutions Using Activated Carbons Obtained from Biomass. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010350. [PMID: 36614695 PMCID: PMC9822277 DOI: 10.3390/ma16010350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/12/2023]
Abstract
The main aim of this study was the determination of temperature influence on adsorption mechanisms of anionic poly(acrylic acid) (PAA) and cationic polyethylenimine (PEI) on the surface of activated carbons (AC) obtained via chemical activation of nettle (NE) and sage (SA) herbs. All measurements were performed at pH 3 at three temperature values, i.e., 15, 25 and 35 °C. The adsorption/desorption of these polymers from single and mixed solution of adsorbates was also investigated. The viscosity studies were additionally performed to obtain hydrodynamic radius values characterizing polymeric macromolecules conformation in the solution. These data are very important for the explanation of changes of linear dimensions of polymer chains with the rise of temperature caused by the modification of polymer-solvent interactions. Moreover, the XPS studies for the systems showing the highest adsorbed amounts in the specific temperature conditions were carried out. These were the systems containing PEI, PAA and NE-AC activated carbon at 25 °C. In such a case, the maximum adsorption capacity towards PAA macromolecules from a single solution of adsorbate reaches the value of 198.12 mg/g. Additionally, the thermodynamic parameters including the free energies of adsorption, as well as changes in free enthalpy and entropy were calculated.
Collapse
Affiliation(s)
- Marlena Gęca
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Teresa Urban
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Azmi G, Saada AM, Shokir EM, El-Deab MS, Attia AM, Omar WAE. Adsorption of the Xanthan Gum Polymer and Sodium Dodecylbenzenesulfonate Surfactant in Sandstone Reservoirs: Experimental and Density Function Theory Studies. ACS OMEGA 2022; 7:37237-37247. [PMID: 36312333 PMCID: PMC9608398 DOI: 10.1021/acsomega.2c03488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Chemical flooding using a polymer and/or surfactant has been widely applied in oilfields worldwide for enhanced oil recovery. Chemical adsorption in reservoirs has a significant effect on the rock permeability and wettability and hence can affect the overall oil production. In this work, two chemicals, namely, the xanthan gum (XG) biopolymer and sodium dodecylbenzenesulfonate (SDBS) anionic surfactant, were used individually as displacement fluids. The amount of chemical adsorption on the rock surface and the residual resistance factor (permeability reduction) were calculated throughout the flooding experiments using an unconsolidated sandstone (SS) pack model. The effects of the injected chemicals' concentration and reservoir salinity on adsorption capacity have been examined. Additionally, the effect of the addition of nanosilica particles (NSPs) to the injected fluid on the rock adsorption was also investigated. The results showed that the amount of XG and SDBS adsorption on the rock surface increased, albeit to a different extent, by increasing the chemical concentration at the applied salinities (0, 3.5, 5, and 10%) of the displacement fluids. Also, the permeability reduction increased with the increase in XG and SDBS concentrations; however, permeability reduction due to SDBS flooding was lower than that of XG in SS. The use of NSPs as a coinjectant to the XG and SDBS displacement fluids increased the adsorption on the SS rock. A plausible mechanism for the adsorption of the XG/NSP and SDBS/NSP blends on the SS surface was proposed. A density function theory calculation was employed to establish a relation between the adsorptivity of NSPs on SDBS and XG and the total energy and dipole moment of the molecules.
Collapse
Affiliation(s)
- George
E. Azmi
- Faculty of Energy
and Environmental Engineering (FEEE), The
British University in Egypt, Cairo 11837, Egypt
| | - Aya M. Saada
- Faculty of Energy
and Environmental Engineering (FEEE), The
British University in Egypt, Cairo 11837, Egypt
| | - Eissa M. Shokir
- Gas Production Engineering Department,
Faculty of Engineering, Cairo University, Cairo 12613, Egypt
| | - Mohamed S. El-Deab
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Attia M. Attia
- Faculty of Energy
and Environmental Engineering (FEEE), The
British University in Egypt, Cairo 11837, Egypt
| | - Walaa A. E. Omar
- Faculty of Energy
and Environmental Engineering (FEEE), The
British University in Egypt, Cairo 11837, Egypt
- Department of Engineering Sciences and Mathematics, Faculty of Petroleum
and Mining Engineering, Suez University, Suez 8151650, Egypt
| |
Collapse
|
6
|
Cao J, Zhu S, Shu Z, Shi L. Effects of residual resistance factor in the mobility control of the polymer flooding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Cao
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shijie Zhu
- Institute of Petroleum and Natural Gas Engineering Chongqing University of Science and Technology Chongqing China
| | - Zheng Shu
- State Key Laboratory of Oil & Gas Reservoir and Exploitation Engineering Southwest Petroleum University Chengdu China
| | - Leiting Shi
- State Key Laboratory of Oil & Gas Reservoir and Exploitation Engineering Southwest Petroleum University Chengdu China
| |
Collapse
|
7
|
Molecularly imprinted polymers coated on the surface of metal–organic frameworks combined with liquid chromatography-tandem mass spectrometry for the detection of free N-acetylneuraminic acid in serum of pneumoconiosis patients. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Zhu S, Zhang S, Xue X, Zhang J, Xu J, Liu Z. Influencing factors for effective establishment of residual resistance factor of polymer solution in porous media. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Application and Optimization of the Rheological Model for a Hydrophobically Associating Dendrimer Polymer. Polymers (Basel) 2022; 14:polym14091747. [PMID: 35566916 PMCID: PMC9101456 DOI: 10.3390/polym14091747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
Polymer flooding is one of the most important enhancing oil recovery (EOR) technologies in the world. With the optimization of polymer synthesis, the performance of polymer solutions has been greatly improved, which can adapt to more complex oil and gas reservoirs. However, with the continuous improvement of the properties of polymer solutions, the elastic property of polymer solutions is significantly improved, and the rheological law has also changed. This series of changes affects the application of polymer flooding reservoir numerical simulation technology. Therefore, constructing an accurate description model and precise limitation conditions is particularly important. The rheological curve with a wide shear range (0.1~10,000 s−1) and the viscoelasticity of the two polymers (partially hydrolysed polyacrylamide (HPAM) and dendritic hydrophobic association polymer (DHAP)) were analyzed and tested by a rotating rheometer. The results showed that under the experimental conditions, the rheological curve of both polymers can be described by the Carreau rheological model. Meanwhile, the structural viscosity of the hydrophobically associating polymer solution (DHAP) greatly improved the elasticity of the solution and led to the change of elastic modulus. Considering the influence of elastic characteristics on the rheological curve, the relaxation time spectrum derived from small vibration experimental data was used to limit the characteristic relaxation time, that is, the value range of λ. It was observed that the experimental data were highly matched with the nonlinear regression fitting curve of the Carreau rheological model. Therefore, the relationship between different test parameters should be fully considered while studying the rheological constitutive equation of viscoelastic fluid, so as to optimize and improve the equation of it.
Collapse
|
10
|
Hao T, Zhong L, Liu J, Sun H, Zhu T, Zhang H, Wu S. Mechanistic Study on the Decrease in Injectivity during Salt-Resistant Polymer Flooding. ACS OMEGA 2022; 7:11293-11304. [PMID: 35415324 PMCID: PMC8992264 DOI: 10.1021/acsomega.2c00296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
According to numerous laboratory experiments and field applications, polymer flooding can effectively modify the liquid absorption profile and increase the sweep efficiency, thereby enhancing the oil recovery. However, long-term injection of polymers decreases the effective permeability of the reservoir and plugs the formation pores, resulting in irreversible reservoir damage. In the development process, polymer types and concentrations must be selected according to the reservoir to avoid problems such as plugging of the formation pores. This study was aimed at clarifying the degree of plugging and the injection limit of the reservoir when a salt-resistant polymer (SRP) is used in production processes of the Daqing Oilfield. To this end, oil displacement experiments, dynamic and static adsorption experiments, and SEM observations were performed using representative reservoir fluid and core samples. The static adsorption of "medium-molecular" SRP reached equilibrium after 36 h, and the saturated adsorption capacity was 3.56 mg/g, which was approximately 2-5 times the dynamic adsorption capacity. For medium-molecular SRP, with a molecular mass of 7 million, the lower limit of the core permeability was 20-40 mD. When the permeability was less than 100 mD, the SRP concentration injected into the core could not exceed 900 mg/L. The oil displacement capacity of SRP decreased owing to the macromolecular hydration radius and the strong aggregation effect of SRP. Polymer adsorption and the retention of sand-carrying critically decreased water permeability. This study provides insights into SRP flooding under different geological conditions in the Daqing Oilfield and can help clarify the molecular mass and concentration of polymers with changes in the reservoir conditions.
Collapse
Affiliation(s)
- Tongchun Hao
- Unconventional
Petroleum Research Institute, China University
of Petroleum Beijing, 102249 Beijing City, China
| | - Liguo Zhong
- Unconventional
Petroleum Research Institute, China University
of Petroleum Beijing, 102249 Beijing City, China
| | - Jianbin Liu
- Unconventional
Petroleum Research Institute, China University
of Petroleum Beijing, 102249 Beijing City, China
| | - Hongyu Sun
- Unconventional
Petroleum Research Institute, China University
of Petroleum Beijing, 102249 Beijing City, China
| | - Tianyin Zhu
- Unconventional
Petroleum Research Institute, China University
of Petroleum Beijing, 102249 Beijing City, China
| | - Hailong Zhang
- Downhole
Operation Branch of Daqing Oilfield Co., LTD, 163458 Daqing, Hei Longjiang Province, China
| | - Shaojie Wu
- Downhole
Operation Branch of Daqing Oilfield Co., LTD, 163458 Daqing, Hei Longjiang Province, China
| |
Collapse
|
11
|
Adsorption of Hydrolysed Polyacrylamide onto Calcium Carbonate. Polymers (Basel) 2022; 14:polym14030405. [PMID: 35160401 PMCID: PMC8838080 DOI: 10.3390/polym14030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonate rock strengthening using chemical techniques is a strategy to prevent excessive fines migration during oil and gas production. We provide herein a study of the adsorption of three types of hydrolysed polyacrylamide (HPAM) of different molecular weight (F3330S, 11–13 MDa; F3530 S, 15–17 MDa; F3630S, 18–20 MDa) onto calcium carbonate (CaCO3) particles via spectrophotometry using a Shimadzu UV-2600 spectrometer. The results are compared to different adsorption isotherms and kinetic models. The Langmuir isotherm shows the highest correlation coefficient (R2 > 0.97) with equilibrium parameters (RL) ranging between 0 and 1 for all three HPAMs, suggesting a favorable monolayer adsorption of HPAM onto CaCO3. The adsorption follows pseudo-second order kinetics, indicating that the interaction of HPAM with CaCO3 is largely dependent on the adsorbate concentration. An adsorption plot reveals that the amount of HPAM adsorbed onto CaCO3 at equilibrium increases with higher polymer molecular weight; the equilibrium adsorbed values for F3330S, F3530S and F3630S are approximately 0.24 mg/m2, 0.31 mg/m2, and 0.43 mg/m2, respectively. Zeta potential analysis shows that CaCO3 has a zeta potential of +12.32 mV, which transitions into negative values upon introducing HPAM. The point of zero charge (PZC) is observed at HPAM dosage between 10 to 30 ppm, in which the pH here lies between 9–10.
Collapse
|