Junisu BA, Sun YS. Hierarchical Surface Instability in Polymer Films.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;
39:15249-15259. [PMID:
37862459 DOI:
10.1021/acs.langmuir.3c01936]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
This study demonstrates hierarchical instabilities in thin films. The hierarchical instabilities display three morphological characteristics: (1) windmill-like patterns at the macroscale, (2) Bénard cells and striations at the microscale, and (3) holes at the mesoscale. Such hierarchical instabilities occurred when spin coating was performed on high-volatile solutions under a high relative humidity (RH) but were suppressed when spin coating was performed on low-volatile solutions regardless of the RH. The high-volatile solutions comprise poly(4-vinylpyridine) (P4VP) in methanol or ethanol. The low-volatility solutions comprise P4VP in propanol or butanol. P4VP molecular weights, P4VP concentrations, spin rates, and film thicknesses are not vital factors in forming hierarchical instability in spin-coated P4VP films. Instead, the formation of hierarchical instabilities depends on the RH and solvent types. Namely, the hierarchical instabilities are driven by Bénard-Marangoni convection, water vapor condensation, and disturbance of spin-up and spin-off stages during spin coating of highly volatile solutions under high RH. Mechanisms of hierarchical instabilities are interpreted in detail.
Collapse