1
|
Mujiburohman M, Elkamel M, Hourfar F, Elkamel A. Machine learning-based prediction of pervaporation permeation using physicochemical properties of permeant-membrane and process conditions. Heliyon 2025; 11:e42714. [PMID: 40040965 PMCID: PMC11876881 DOI: 10.1016/j.heliyon.2025.e42714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
It is well accepted that the pervaporation (PV) permeation was affected by the physicochemical properties of permeant-membrane materials and process conditions. Given many experimental data of PV, a predictive model on PV permeation based on their physicochemical properties and process conditions can be constructed. This study proposes a machine learning approach in terms of artificial neural network (ANN) to predict the permeation flux of PV, as a function of physicochemical properties of permeant-membrane material and process conditions. A large dataset was assembled from the literature and was divided into a training subset and a testing subset. The output variable was the PV flux, while the input variables were the physicochemical properties of permeant-membrane and the process conditions which were considered to affect the PV flux. Two types of inputs were evaluated: regular variables (Type I) and dimensionless groups derived from these regular variables (Type II). Several neural network architectures were evaluated. The best predictive performance for Type I inputs was achieved with a deep neural network consisting of two layers, each with 7 neurons. For Type II inputs, the optimal architecture was a shallow neural network with a single layer containing 6 neurons. The correlation coefficients (R) during model training for Type I and Type II were 0.93674 and 0.88332, respectively, while the root mean square errors (RMSE) were 42.2558 and 38.0766, respectively. The extent of dependency of output on input variables was determined using Garson's equation. It was found that the most affecting physicochemical properties on the PV permeation flux were glass transition temperature (T gm ), solubility difference of two different permeants ( Δ S o l i j ) , and molar volume of permeant (v i ), consecutively. Whereas the operating condition that dominantly affects the PV permeation flux was permeate pressure (P p ).
Collapse
Affiliation(s)
- Muhammad Mujiburohman
- Chemical Engineering Department, Universitas Muhammadiyah Surakarta (UMS), 57102, Indonesia
| | - Marwen Elkamel
- Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL, 32816, USA
| | - Farzad Hourfar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, Abu Dhabi PO Box 127788, United Arab Emirates
| |
Collapse
|
2
|
Jovanović J, Ćirković J, Radojković A, Tasić N, Mutavdžić D, Branković G, Branković Z. Enhanced stability of encapsulated lemongrass essential oil in chitosan-gelatin and pectin-gelatin biopolymer matrices containing ZnO nanoparticles. Int J Biol Macromol 2024; 275:133335. [PMID: 38955548 DOI: 10.1016/j.ijbiomac.2024.133335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The use of essential oils is widespread in various fields such as pharmacy, pest control, and active packaging. However, their instability and short-term effects require methods to enhance their durability and effectiveness. Encapsulation in biopolymer matrices appears to be a promising approach due to the environmental safety and cost-effectiveness of such formulations. In this study, different oil-in-water emulsions were prepared by mixing chitosan-gelatin (C-G) or pectin-gelatin (P-G) solutions with lemongrass essential oil (LG). ZnO NPs were used as an additional active component. Encapsulation in biopolymer matrices resulted in stable emulsions with a significantly slower release of LG, and ZnO NPs further suppressed LG release, particularly in the P-G emulsion. They also contributed to the stability of the emulsions and a decrease in the average droplet size of LG. Furthermore, the presence of LG and ZnO NPs improved the smoothness of the films prepared from the emulsions and dispersions using the casting technique. SEM/EDS analysis confirmed the homogeneous distribution of ZnO NPs in both C-G and P-G films. By adjusting the type and content of the biopolymers and NPs, such emulsions could be effectively utilized in various applications where controlled release of active components is required.
Collapse
Affiliation(s)
- Jelena Jovanović
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Jovana Ćirković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Aleksandar Radojković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Nikola Tasić
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, p.p. 660 SI-1001 Ljubljana, Slovenia
| | - Dragosav Mutavdžić
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Goran Branković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zorica Branković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| |
Collapse
|
3
|
Sarwar T, Raza ZA, Nazeer MA, Khan A. Fabrication of gelatin-incorporated nanoporous chitosan-based membranes for potential water desalination applications. Int J Biol Macromol 2023; 253:126588. [PMID: 37659503 DOI: 10.1016/j.ijbiomac.2023.126588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Membrane technology has extensively been used in diverse phenomena such as separation, purification and controlled transportation. Herein, gelatin-incorporated porous chitosan membranes have been prepared using the sol-gel approach for potential water desalination applications. The porogens of poly(ethylene glycol) and Triton X-100 were employed for the mentioned purpose. The prepared porous membranes have been characterized for surface chemical, structural, thermal, mechanical and functional attributes using appropriate analytical approaches. Electron microscopy expressed porous surface morphologies of the resultant films with an average pore size of 14.5 nm. The infrared analysis demonstrated a successful crosslinking of the precursors in the resulting membranes via maleic anhydride. Differential scanning calorimetry analysis disclosed acceptable thermal stability of the test membranes, workable above ambient temperatures. The membrane expressed a water contact of 68.59°, which indicated moderate hydrophilicity, thus allowing controlled transport of the aqueous media. The resultant gelatin/chitosan porous membrane exhibited a porosity of 98 % against kerosene oil. In contrast, the flowability of 7.14 (ethanol), 5.00 (distilled water) and 0.53 (ethylene glycol) mL/min has been recorded against the mentioned liquids. The membrane efficiently purified the local canal water to permissible limits. Such membranes have been qualified for potential applications in water purification systems.
Collapse
Affiliation(s)
- Tanzeel Sarwar
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | | | - Amina Khan
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
4
|
Naik ML, Sajjan AM, M A, Achappa S, Khan TMY, Banapurmath NR, Kalahal PB, Ayachit NH. Nanobacterial Cellulose Production and Its Antibacterial Activity in Biodegradable Poly(vinyl alcohol) Membranes for Food Packaging Applications. ACS OMEGA 2022; 7:43559-43573. [PMID: 36506209 PMCID: PMC9730313 DOI: 10.1021/acsomega.2c04336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Nanobacterial cellulose (NBC) was produced and incorporated into biodegradable poly(vinyl alcohol) (PVA) in different weight ratios to obtain polymer nanocomposite membranes. The physicochemical properties of the membranes were studied using Fourier transform infrared (FTIR) spectroscopy, a universal testing machine (UTM), thermogravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD) techniques, and field emission scanning electron microscopy (FESEM). FTIR confirmed the consolidation of NBC into PVA by exhibiting significant changes in the peaks compared to NBC and PVA individually. The highest tensile strength of 53.33 MPa and 235.30% elongation at break of the membrane M-10 mass % NBC was obtained, illuminating that NBC provides stiffness and PVA imparts elasticity. WAXD revealed that the crystalline nature of the membrane increases up to 10 mass % and decreases beyond it. The effect of NBC on the poly(vinyl alcohol) membranes for food packaging was investigated systematically. Among all the membranes, M-10 mass % NBC was found to be the most suitable for packaging applications. Membranes had antimicrobial activity against food microbes and showed degradability behavior in the soil. The tests on membranes for packaging revealed that fruits were protected from spoilage caused by microorganisms. Hence, the prepared membranes could be used as an alternative to conventional plastics for packaging applications.
Collapse
Affiliation(s)
- Manu L. Naik
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
| | - Ashok M. Sajjan
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| | - Ashwini M
- AICRP
on EAAI (Bioconversion Technology), University
of Agricultural Sciences, Dharwad580005, India
| | - Sharanappa Achappa
- Department
of Biotechnology, KLE Technological University, Hubballi580031, India
| | - T. M. Yunus Khan
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, Abha61421, Saudi Arabia
| | - Nagaraj R. Banapurmath
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| | - Prakash B. Kalahal
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
| | - Narasimha H. Ayachit
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| |
Collapse
|
5
|
Moreira Pereira E, Dellinghausen Borges C, dos Santos Formiga A, Sidnaldo Pinsetta Junior J, Mattiuz BH, Santos Monteiro S. Conservation of red guava 'Pedro Sato' using chitosan and gelatin-based coatings produced by the layer-by-layer technique. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Burts K, Plisko T, Dmitrenko M, Zolotarev A, Kuzminova A, Bildyukevich A, Ermakov S, Penkova A. Novel Thin Film Nanocomposite Membranes Based on Chitosan Succinate Modified with Fe-BTC for Enhanced Pervaporation Dehydration of Isopropanol. MEMBRANES 2022; 12:membranes12070653. [PMID: 35877856 PMCID: PMC9319000 DOI: 10.3390/membranes12070653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
The application of environmentally friendly and energy-efficient membrane processes allows improvement the ecological safety and sustainability of industrial production. However, the effective application of membrane processes requires novel high-performance thin film composite (TFC) membranes based on biopolymers to solve environmental problems. In this work for the first time novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) were developed for enhanced pervaporation dehydration. The formation of a selective layer of TFN membranes on the porous membrane-support was carried out by two methods—dynamic technique and physical adsorption. The effect of the membrane formation method and Fe-BTC content in ChS layer on the structure and physicochemical properties of TFN membranes was investigated. The developed TFN ChS-based membranes were evaluated in the pervaporation dehydration of isopropanol (12–30 wt.% water). It was found that TFN ChS-Fe-BTC membranes prepared by two methods demonstrated improved permeation flux compared to the reference TFC ChS membrane. The best transport properties in pervaporation dehydration of isopropanol (12–30 wt.% water) were possessed by TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique (permeation flux 99–499 g m−2 h−1 and 99.99% water in permeate) and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption (permeation flux 180–701 g m−2 h−1 and 99.99% water in permeate).
Collapse
Affiliation(s)
- Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.B.); (A.B.)
| | - Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.B.); (A.B.)
- Correspondence:
| | - Mariia Dmitrenko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (S.E.); (A.P.)
| | - Andrey Zolotarev
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (S.E.); (A.P.)
| | - Anna Kuzminova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (S.E.); (A.P.)
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.B.); (A.B.)
| | - Sergey Ermakov
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (S.E.); (A.P.)
| | - Anastasia Penkova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (S.E.); (A.P.)
| |
Collapse
|
7
|
Naik ML, Sajjan AM, Yunus Khan TM, M A, Achappa S, Banapurmath NR, Ayachit NH, Abdelmohimen MAH. Fabrication and Characterization of Poly (Vinyl Alcohol)-Chitosan-Capped Silver Nanoparticle Hybrid Membranes for Pervaporation Dehydration of Ethanol. Gels 2022; 8:gels8070401. [PMID: 35877486 PMCID: PMC9321507 DOI: 10.3390/gels8070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chitosan-capped silver nanoparticle (CS-capped AgNPs)-incorporated Poly(vinyl alcohol) (PVA) hybrid membranes were prepared by a solution-casting technique for ethanol dehydration via pervaporation. The incorporation of CS-capped AgNPs into the PVA membrane and its influence on membrane properties and pervaporation-separation process of azeotropic water/ethanol mixture was studied. The addition of CS-capped AgNPs into the PVA membrane reduced the crystallinity, thereby increasing the hydrophilicity and swelling degree of the hybrid membrane, supported by contact angle (CA) analyzer and swelling degree experiments, respectively. Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of polymeric matrix between PVA and CS and also the binding of AgNPs onto the functional group of CS and PVA, which was also reflected in the microstructure images demonstrated by scanning electron microscopy (SEM) and by 2θ angle of wide-angle X-ray diffraction (WAXD). The effect of CS-capped AgNPs on the thermal stability of the hybrid membrane was demonstrated by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). These characteristics of the hybrid membrane positively impact the efficiency of the dehydration of ethanol, as indicated by pervaporation experiments. The best performances in total flux (12.40 ± 0.20 × 10−2 kg/m2 h) and selectivity (3612.33 ± 6.03) at 30 °C were shown for CS-capped AgNPs PVA hybrid membrane containing 2 wt.% CS-capped AgNPs (M-4). This confirms that the developed hybrid membranes can be efficiently used to separate water from azeotropic aqueous ethanol.
Collapse
Affiliation(s)
- Manu L. Naik
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
- Correspondence: ; Tel.: +91-944-880-1139; Fax: +91-836-237-4985
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (T.M.Y.K.); (M.A.H.A.)
| | - Ashwini M
- AICRP on EAAI (Bioconversion Technology) MARS, University of Agricultural Sciences, Dharwad 580005, India;
| | - Sharanappa Achappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India;
| | - Nagaraj R. Banapurmath
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Narasimha H. Ayachit
- Center for Material Science, KLE Technological University, Hubballi 580031, India; (N.R.B.); (N.H.A.)
| | - Mostafa A. H. Abdelmohimen
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (T.M.Y.K.); (M.A.H.A.)
- Shoubra Faculty of Engineering, Benha University, Cairo 11629, Egypt
| |
Collapse
|